
Towards a Dialogue Based Interface for Query
Synchronization

Giuseppe Polese
Dipartimento di Matematica e Informatica

University of Salerno
Via Ponte don Melillo, 84084 Fisciano (SA), Italy

gpolese@unisa.it

Mario Vacca
Dipartimento di Matematica e Informatica

University of Salerno
Via Ponte don Melillo, 84084 Fisciano (SA), Italy

mvacca@unisa.it

ABSTRACT
The query synchronization is one of main issues of schema
evolution: when a schema evolves the existing queries could
stop working and it becomes necessary to redefine them over
the new schema. In this paper, according to the recently
recognized importance of advanced query formulation inter-
faces, the basic ideas and components underlying an inter-
active model of tool for supporting query synchronization
are outlined.

Categories and Subject Descriptors
H.1.2 [Models and Principles]: User/Machine Systems;
H.2.4 [Database Management]: Systems—Query process-
ing

General Terms
Human Factors, Theory

Keywords
Dialogue, interrogative logic, metaquery, query formulation
interface, query synchronization, schema evolution, schema
mapping

1. INTRODUCTION
Database schema evolution naturally occurs during the life
cycle of an information system: modifications of the schema
can take place due to either changes in the world, or errors,
or design decisions, and they can yield very significant prob-
lems. The query synchronization problem, which has been
increasing its importance lately, becoming one of main is-
sues of schema evolution, arises when a schema evolves and
the existing queries stop working and it calls for the redefi-
nition of them over the new schema. This problem, a very
challenging one in the context of data warehouses, has been
increasing its importance due to the development of the Se-
mantic Web [22, 19].

Most of the current approaches to the query synchronization
problem aim at rewriting queries automatically, but, unfor-
tunately, it is not always possible and human intervention
could be required. This makes the problem also relevant
in the context of the man-machine interaction, both on the
user and the database administrator (DBA) side: in the first
case, the man-machine interaction is important to make the
users able to pose queries to the database without taking
care of the schema changes (as it is hoped in [15]); in the
second one, the interaction should assist the DBA during the

synchronization process of the queries which haven’t been
updated automatically.

The problem of query synchronization is very closely related
to the well known problem of query rewriting in integration
systems for which Clide [21], an advanced query formulation
interface, has been recently proposed. Unfortunately, the
problem of query synchronization differs from reformulation,
as it can require approximating queries.

Our idea is the following: when it is not possible to synchro-
nize the query automatically, the user (or the DBA) and
the system should collaborate to reach an agreement about
a query that the system can execute and whose answer is
suitable for the user (or the DBA). This is quite natural as
it follows a very common human behaviour, the dialogue for
knowledge seeking: when a person asks another one for some
information, it is possible that the latter is not able to an-
swer the given question; in this case, a dialogue between the
two people starts in order to state a correspondence between
their knowledge.

In this paper, we investigate the possibility of developing an
interactive tool that embodies the previous idea, to redefine
no more working queries after schema evolution. According
to our analysis, the dialogue aim is to find a schema mapping
[5], while the dialogue terms are metaqueries. Therefore, the
main components of the tool we envisage are: 1)a visual in-
terface integrating query and metaquery formulation with
schema mapping capabilities; 2)an interface manager (IM)
for managing the dialogue between the user and the inter-
face. We individuate the main features of the interface and
we propose to use the Hintikka interrogative logic [13] for
modeling the man-machine dialogue.

2. THE QUERY SYNCHRONIZATION PRO-
BLEM

When a query does not work anymore (because of a schema
change) and it is necessary to fix its definition, the best
result you could expect is to rewrite the query in terms of
the new schema, so that the new query has the same answer
as the old one. Unfortunately, this is not always possible,
and you have to be satisfied with a query whose answer is
close to that of the original one (i.e. an answer that helps
in knowing the whole or a part of the answer of the original
query).

Example 1. Consider the schema storing information about

Interaction Design and Architecture(s) Journal - IxD&A, N. 5-6, 2009, pp. 31-34



cities:

S = {Cities(Name, Country, Pop., Capital)}

and the query:

IsCapital(x, y)← Cities(x, y, z, t) ∧ t = “yes”

asking for the capitals of the countries.

Consider the schema:

T = {Cities′(Name, Country, Pop.)}

obtained from S deleting the attribute Capital from the re-
lation Cities.

Synchronizing the query IsCapital means trying to rewrite
it using the information from the schema T .

According to Bernstein et al. [5], a way to solve the pro-
blem of query synchronization consists in finding a mapping
between the two schemas S and T and then composing1 the
query with the mapping to obtain the new query.

Intuitively, a mapping expresses a relation between the in-
stances of two schemas and it links the two schemas. A
simple example of mapping between the two schemas of the
example 1 is:

(∀x, y, z, t)(Cities(x, y, z, t)→ Cities′(x, y, z))

In the case of the example 1, it is difficult to decide automat-
ically how to substitute the lost information (the attribute
Capital) so that the resulting query could be useful or suit-
able to the user. For instance, it could be possible to use a
condition to obtain an approximate query:

IsCapital(x, y)← Cities′(x, y, z) ∧ z ≥ 1.000.000

It is obvious that different users could use different condi-
tions.

3. STATE OF THE ART AND MOTIVATIONS
The problem of view synchronization2 was first addressed,
defined and classified in the taxonomy of view adaption prob-
lems by Rundensteiner, Lee and Nica, who also proposed a
solution to it [22].

The existing approaches to the problem of view synchroniza-
tion can be grouped in two classes, depending on the way
the schema changes are performed, that is by schema change
operations or using schema mappings.

Roughly speaking, a schema change operation applied to a
schema produces a new version of the schema itself (e.g.
delete attribute; see [1] for a taxonomy of simple schema
changes). The approaches based on schema change opera-
tions [16, 2] deal with all kinds of relations between the old

1In this case the composition refers to the mapping compo-
sition operator as defined in the Generic Model Management
area [5].
2To the best of our knowledge, the problem of breaking
queries was addressed in [15].

and new view extents, but in a limited number of cases (de-
pending on the change operations taken in account). There-
fore, extending these approaches needs a wider and com-
prehensive number of schema change operations to be con-
sidered. This kind of extension process has two drawbacks:
first, the problem of the insufficiency of simple schema change
operations has not been already solved (see [6, 17, 10] for a
discussion and some proposals); second, since an algorithm
for each schema change is required, the process of query
synchronization isn’t general.

A mapping links two schemas and, typically, mappings be-
tween two schemas S and T are described by“set of formulas
of some logical formalism over (S, T )” (Fagin et al. [12], p.
999). The approaches based on the use of mappings to rep-
resent changes can handle a wider range of schema changes
than those based on schema change operations. Among the
mapping based ones, the approaches belonging to Generic
Model Management [4, 18, 5] are more general and straight-
forward than the previous ones, because they don’t need
different algorithms for each change operation. The main
limitation of these approaches is that they don’t solve the
problem in the case of schema changes which reduces the
capacity of the source schema (like the attribute deletion of
the example 1): in fact, the proposed solutions within the
Generic Model Management either drop the non rewritable
views (called orphans) or they exploit non-generic model
semantics [4]. Always based on the use of schema map-
pings, the approach proposed in [15] can take in account all
kinds of changes: the authors proposed to use the Schema-
Log language to program the query synchronization process
and they invoked the use of the cooperative query answering
[9] for solving this problem in the case of capacity reducing
schema changes.

Moreover, Prism [10], a mixed approach (both schema change
operation and mapping based), has been recently proposed:
the related tool is based on theoretical advances and it uses
schema change operations, including also some compound
ones, and whose meaning is represented by mappings. It re-
formulates SQL queries into equivalent ones (when possible),
otherwise the DBA intervention is requested.

To sum up, the schema change operations based approaches
are both automatic and able to deal with capacity reducing
changes, but they are limited by the small number of changes
and by the difficulty to extend them. The mapping based
approaches either are automatic, but only reformulate the
query exactly, or they are programming based and, hence,
general.

Therefore, the need for a tool to support the DBA, avoiding
to involve s/he in programming details, arises. In the next
sections we show that such a tool can be based on the use
of a visual interface.

It is also worth to note that visual interfaces are used by the
schema evolution tools, but their role is limited: for example,
in [10] the interface allows the DBA to write functions to
synchronize queries manually; a more general use is that
considered by the model management based tools, which
aim to use visual interfaces to match schema versions [20].

Interaction Design and Architecture(s) Journal - IxD&A, N. 5-6, 2009, pp. 31-34



4. THE INTERFACE BASED APPROACH TO
QUERY SYNCHRONIZATION

We embrace the thesis of Lakshmanan et al. [15], according
to which the user should be free to pose queries regardless of
the schema changes. This means“to shield the modifications
to the schema of the database from the user as much as
possible.”(Lakshmanan et al. [15]) and the problem becomes
building a suitable “shield”.

As pointed out in the previous section, the problem of query
synchronization is especially challenging in the case of lost
information, because it is necessary to substitute it with
other ones. When the lack of information is so significant
that it is impossible to rewrite the query, the problem be-
comes, borrowing the words from Lakshmanan et al., “How
can we produce meaningful answers to queries (based on
an older version of the schema) which refer to such “lost”
information? ” [15]. In [15] the authors suggested the ap-
plication of the cooperative query answering techniques [9]
in combination with the use of SchemaLog language.

We think that it is possible to go a step further, proposing a
more flexible “shield” based on an human-computer collabo-
rative approach. The observation at the base of our proposal
is the following: the updating of queries is usually set only
after a schema mapping has been found; in other words,
the updating of queries is seen as an activity following that
of a complete schema matching. This is quite unnatural if
compared with human behavior: in fact, sometimes humans
update their knowledge (schemata) after a question they
are not able to answer and they do this through a follow-up
questioning process with the questioner. Analogously, when
a query is posed to a system (on an evolved schema), the
system could ask for some “explanations” trying to build a
bridge between its schema and that one related to the query.
This kind of approach has the advantage of building (partial)
mappings only if and when they are necessary.

This can be achieved through an interface having the role
of realizing a dialogue in which the system and the user ask
metaqueries reciprocally to build a (partial) schema map-
ping (i.e. a mapping only linking the metadata in the query
to the old schema). In fact, as the role of the interface is to
assist the user in the process of query rewriting, it should
provide some help to the user: the best one is exactly the
mapping, while the worst one is the possibility of browsing
the whole schema. It could be also desirable to provide the
user with minor suggestions; for example, when some infor-
mation is lost because of a schema change, many suggestions
can be provided to the user, all of them based on the ap-
plication of heuristics and, as the result of heuristics is not
certain, it has to be verified and this can be done submit-
ting it to the user evaluation. In this case the user is asked
a metaquery about a possible mapping.

To sum up, the interface has to allow the user either to
ask the system queries and metaqueries (the first ones could
help, for example, in assessing if the degree of approximation
of the new query is satisfying, while the second ones help
in finding the schema mapping) or to answer metaqueries,
providing information about metadata and mappings.

Example 2. Consider the query in the example 1:

IsCapital(x, y)← Cities(x, y, z, t) ∧ t = “yes”.

A system trying to execute this query will receive an er-
ror message because the relation Cities no longer exists; in
this case, if the system knows that the relation Cities was
deleted, it could communicate this to the user [15], other-
wise it could apply an heuristic (e.g. to find all the relations
whose attributes are included in those of the relation Cities)
and communicate the result to the user.

4.1 The features of the visual interface
Today, visual query formulation has become a common way
to pose queries and metaqueries in the database field, also
thanks to industrial tools like the Microsoft query builder3 or
to the researches in the field of the visual data mining [14].
Moreover, the use of visual interfaces have been recently
exploited in query rewriting [21] and for schema mapping
[20].

The interface we envisage has to integrate all the previously
illustrated functionalities: visual meta/query formulation
and visual schema mapping:

• query based dialogue

This feature enables the user to pose queries using vi-
sual actions.

• metaquery based dialogue

According to Ben-Eliyahu-Zohary et al. “A metaquery
has the form

T ← L1, . . . , Lm

where T and Li are literal schemes. A literal scheme S
has the form Q(Y1, ..., Yn) where all non-predicate vari-
ables Yk are implicitly universally quantified. The ex-
pression Q(Y1, ..., Yn) is called a relational pattern (of
arity n).”(Ben-Eliyahu-Zohary et al. [3], p. 62). Using
metaqueries the user can operate on schema mappings.
We think to use a Clide-like interface, enriched with
metaquerying capability.

• schema browsing and mapping

This feature has to be integrated with the previous
ones, in the sense that it has to be possible to use
it together with them while trying to synchronize a
query.

4.2 The dialogue modeling
The interface is managed by an interface manager (IM) driv-
ing the dialogue. We propose to use the Hintikka interro-
gative logic [13] to model the logic of the IM. The Hintikka
view of reasoning can be summarized as follows: a line of
reasoning is constituted by a sequence of sentences; a new
sentence in such a line is either obtained by deduction or by
asking an information source for it. The logic of Hintikka
is modelled by a game played by the inquirer against one
or more information sources, and the semantics used is the
tableau method. There are two kinds of moves: logical in-
ference moves and interrogative moves. The formers are the

3http://www.microsoft.com/sql/

Interaction Design and Architecture(s) Journal - IxD&A, N. 5-6, 2009, pp. 31-34



typical deductive rules, and they are tableau-building rules
(see [13] for a complete list). Rules for questioning serve
instead to generate questions.

Therefore, the IM uses these rules to generate metaqueries
to be communicated to the user through the interface.

5. CONCLUSIONS AND FUTURE WORK
In this paper, the basic ideas about the possibility of syn-
chronizing queries in an interactive way have been presented;
this is a part of a research project [8, 11], which we have been
developing at the University of Salerno, aiming to build a
support tool for schema evolution.

The interface paradigm we propose paraphrases a typical hu-
man behaviour: the dialogue for knowledge seeking. Anal-
ogously, the resulting schema evolution tool should interact
with the user to find a (partial) schema mapping for syn-
chronizing not working query. In order to realize this kind
of process, a visual interface (with multiple functionalities),
managed by an Interface Manager, is needed. Two main
problems have to be still coped with: the design of the in-
terface and the modeling of the Interface Manager. We pro-
posed to use the Hintikka interrogative logic [13] for mod-
eling the dialogue and we have been investigating the set
of precise rules to be employed for driving the dialogue and
the rules for enriching the model by heuristics. Moreover,
we have been devising the set of visual actions allowing to
realize the functionalities of the visual interface.

6. REFERENCES
[1] J. Banerjee, W. Kim, H.-J. Kim, and H. F. Korth.

Semantics and implementation of schema evolution in
object-oriented databases. In U. Dayal and I. L.
Traiger, editors, SIGMOD Conference, pages 311–322.
ACM Press, 1987.

[2] Z. Bellahsene. Schema evolution in data warehouses.
Knowl. Inf. Syst., 4(3):283–304, 2002.

[3] R. Ben-Eliyahu-Zohary, E. Gudes, and G. Ianni.
Metaqueries: Semantics, complexity, and efficient
algorithms. Artif. Intell., 149(1):61–87, 2003.

[4] P. A. Bernstein. Applying model management to
classical meta data problems. In CIDR, 2003.

[5] P. A. Bernstein and S. Melnik. Model management
2.0: manipulating richer mappings. In Chan et al. [7],
pages 1–12.

[6] P. Brèche. Advanced principles for changing schemas
of object databases. In P. Constantopoulos,
J. Mylopoulos, and Y. Vassiliou, editors, CAiSE,
volume 1080 of Lecture Notes in Computer Science,
pages 476–495. Springer, 1996.

[7] C. Y. Chan, B. C. Ooi, and A. Zhou, editors.
Proceedings of the ACM SIGMOD International
Conference on Management of Data. ACM, 2007.

[8] S.-K. Chang, V. Deufemia, G. Polese, and M. Vacca.
A logic framework to support database refactoring. In
R. Wagner, N. Revell, and G. Pernul, editors, DEXA,
volume 4653 of Lecture Notes in Computer Science,
pages 509–518. Springer, 2007.

[9] F. Cuppens and R. Demolombe. Cooperative
answering: A methodology to provide intelligent
access to databases. In Expert Database Conf., pages

621–643, 1988.

[10] C. Curino, H. J. Moon, and C. Zaniolo. Graceful
database schema evolution: the prism workbench.
PVLDB, 1(1):761–772, 2008.

[11] V. Deufemia, G. Polese, G. Tortora, and M. Vacca.
Conceptual foundations of interrogative agents. In
M. Baldoni, A. Boccalatte, F. D. Paoli, M. Martelli,
and V. Mascardi, editors, WOA’07, pages 26–33.
Seneca Edizioni, 2007.

[12] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan.
Composing schema mappings: Second-order
dependencies to the rescue. ACM Trans. Database
Syst., 30(4):994–1055, 2005.

[13] J. Hintikka, I. Halonen, and A. Mutanen.
Interrogative logic as a general theory of reasoning. In
Handbook of the Logic of Argument and Inference:
The Turn Towards the Practical, pages 295–337, 2002.

[14] S. Kimani, T. Catarci, and G. Santucci. A visual data
mining environment. In S. J. Simoff, M. H. Böhlen,
and A. Mazeika, editors, Visual Data Mining, volume
4404 of Lecture Notes in Computer Science, pages
331–366. Springer, 2008.

[15] L. V. S. Lakshmanan, F. Sadri, and I. N.
Subramanian. On the logical foundations of schema
integration and evolution in heterogeneous database
systems. In DOOD ’93, pages 81–100, 1993.

[16] A. J. Lee, A. Nica, and E. A. Rundensteiner. The eve
approach: View synchronization in dynamic
distributed environments. IEEE Trans. Knowl. Data
Eng., 14(5):931–954, 2002.

[17] B. S. Lerner. A model for compound type changes
encountered in schema evolution. ACM Trans.
Database Syst., 25(1):83–127, 2000.

[18] S. Melnik. Generic Model Management: Concepts and
Algorithms, volume 2967 of Lecture Notes in
Computer Science. Springer, 2004.

[19] S. Melnik, E. Rahm, and P. A. Bernstein. Developing
metadata-intensive applications with rondo. J. Web
Sem., 1(1):47–74, 2003.

[20] R. J. Miller, M. A. Hernández, L. M. Haas, L. Yan,
C. T. H. Ho, R. Fagin, and L. Popa. The clio project:
managing heterogeneity. SIGMOD Rec., 30(1):78–83,
2001.

[21] M. Petropoulos, A. Deutsch, and
Y. Papakonstantinou. Clide: interactive query
formulation for service oriented architectures. In Chan
et al. [7], pages 1119–1121.

[22] E. A. Rundensteiner, A. J. Lee, and A. Nica. On
preserving views in evolving environments. In
F. Baader, M. A. Jeusfeld, and W. Nutt, editors,
KRDB, volume 8 of CEUR Workshop Proceedings,
pages 13.1–13.11. CEUR-WS.org, 1997.

Interaction Design and Architecture(s) Journal - IxD&A, N. 5-6, 2009, pp. 31-34


