Interaction Design and Architecture(s) Journal - IXD&A, N. 5-6, 2009, pp. 23-30

BANCO: a Web Architecture Supporting
Unwitting End-User Development

Barbara Rita Barricelli, Andrea M arcante, Piero
M ussio, Loredana Parasiliti Provenza, Stefano

Valtolina
Universita degli Studi di Milano
Via Comelico, 39/41
20135 Milano, laly
+39 02 50316290

{barricelli, marcante, mussio, parasili,
valtolin} @dico.unimi.it

ABSTRACT

Today end users are no longer mere consumers of computer
tools but increasingly need to be more active producers of
information and software artifacts. New techniques for
engineering software are needed to support end users in this
new role. This paper introduces one of these techniques,
namely unwitting end-user development, and explains the
BANCO architecture, which has been designed to support
unwitting end-user development allowing the creation of
systems customized to end-user culture, end-user role, and
platform in use, as well as system re-use and evolution. It also
supports consistency in interaction styles, particularly in web
applications. This reasoning is made concrete through an
example that presents a factory-automation prototype built
using the BANCO architecture.

Categories and Subject Descriptors

D.1.7 [Programming Techniques]: Visual Programming; H.1.2
[Models and Principles]: User/Machine Systems — Human
Factors; D.2.2 [Software Engineering]: Design Tools and
Techniques; D.2.6 [Software Engineering]: Programming
Environments - Interactive Environments.

General Terms
Design, Human Factors, Languages.

Keywords
End-user development, unwitting software programming,
interactive systems, AJAX architecture, XML.

1. INTRODUCTION

End users are “people outside the information system
department”, required “to develop software applications in
support of organizational tasks” [5]. End-user development
techniques propose various approaches that allow “users of
software systems, who are acting as non-professional software
developers, at some point to create, modify or extend software
artifacts” [18]. In this situation, end users are increasingly
evolving from passive consumers of data and computer tools
into active producers of information and software [8, 14].
Experts in industrial, business or scientific disciplines, not
necessarily experts in computer science, end users are in any

Giuseppe Fresta
Consiglio Nazionale delle Ricerche
Via G. Moruzzi, 1
56124 Pisa, Italy
+39 050 3152933

giuseppe.fresta@isti.cnr.it

case responsible for possible errors and mistakes, even for
those generated by wrong or inappropriate use of the software
they develop. Also when given this responsibility, they do not
willingly become computer experts, although they need to
program and maintain control over the information-processing
tasks they generate [7].

To overcome this contradiction, several researchers proposed
approaches in which end users can program following their
reasoning habits, and not computing habits of computer
scientists, embedded in traditional programming languages
[20, 23, 25]. In this line, this paper illustrates how EUD
challenges can be faced by adopting the metaphor of habitable
environments, first introduced by Alexander and Borchers
seminal works [2, 4], which offer their users a “quality without
a name” that allows them to develop their activities following
strategies not prescribed a priori but dictated by the current
situation. In the paper we present an architecture which
implements the metaphor by presenting the virtual
environments, offered to end users to develop their activities,
as a space, in which virtual tools are deployed according to a
presentation strategy reflecting end wusers’ culture and
expectations [6, 7]. These virtual tools are shaped and behave
in ways that are familiar to end users. The virtual environment
becomes a “space of opportunities”, opportunities that end
users can exploit to develop their reasoning and to achieve
their goals. No predefined strategy is imposed on end users,
who follow their reasoning strategies in solving problem -
including when they develop new-programmed tools.

End users develop these programs as a part of their own
activities, which they are highly motivated to perform but
without being aware they are programming. For this reason and
inspired by [21], they were called “unwitting programmers” or
“unwitting software developers” in [9, 10], where their
characteristics and the needs of appropriate development
techniques are studied. Systems supporting unwitting user
development and the tools populating it must not only be
easy to use and easy to develop and to tailor but also designed
in order to help users understanding and appropriating them
[12]. To allow proper appropriation, the environments and the
tools must not only be presented to end users as symbols
(icons, words, graphical elements) which are familiar and
easily perceptible to them, i.e. localized to the user culture
[13], but must also be localized to the role the end user is
acting and to the platform s/he is using, as discussed in the
following sections.

Interaction Design and Architecture(s) Journal - IXD&A, N. 5-6, 2009, pp. 23-30

This paper briefly introduces unwitting end-user development
(uEUD) and then describes the current state of the specification
of an architecture, which is designed to support uEUD. This
architecture is the result of a process determined by the
development of several interactive systems supporting
different communities of unwitting software developers [6, 7,
8, 20].

This architecture is called BANCO architecture (B-architecture
for short). It is an AJAX-oriented, open source architecture,
designed a) to be customized to its user culture, to its user role
and to the platform in use; b) to be easy to use and develop
[11, 17]; c) to support end-user unwitting programming. At
the base of the B-architecture there is a framework called
BANCO framework supporting the unwitting development of
interactive systems. This framework is composed by a set of
XML and ECMAScript documents specifying the appearance
and behavior of the system to be instantiated. The result of the
instantiation activity is a customized version of the B-
architecture, which appears to its users as an interactive Web
environment in which they can develop their uEUD. The
discussion is made concrete by the description of an example
that presents a prototype realized for a factory automation
company according to the B-architecture. In Section 2, we first
introduce our view on uEUD. Next, the example is presented
(Section 3). The B-architecture is described in Section 4. The
specification documents in the BANCO framework and their
corresponding languages are described in Section 5.

2. AN OVERVIEW OF UNWITTING END-
USER DEVELOPMENT

The design and development of environments that support end
users in unwitting software programming require knowledge
spanning, at least, from software engineering to HCI (Human
Computer Interaction) and specific application domain [3].
Therefore, at least software engineers, HCI experts and
representative end users, as domain experts, must collaborate
in the design. The whole process is not without difficulties.
Members of the three communities, namely software engineers,
HCI experts and end users, whether they are domain experts or
workers on the field, must collaborate on the activity.
Collaboration is made difficult by the communication gaps
existing among them. For example, end users and software
engineers actually possess distinct types of knowledge, users
being the “owners” of the problem and developers being the
“owners” of the technology to solve the problem. They follow
different approaches and reasoning strategies for modeling,
performing and documenting the tasks to be carried out in a
given application domain; end users do not understand
software developers’ jargon and developers often do not
understand user jargon. Interactive systems usually reflect the
culture, skill and articulatory abilities of software engineers
rather than those of end users. As a result, end users are
obliged to adopt interaction styles that are alien to their
culture, and are often charged with housekeeping tasks, which
do not interest them and divert their attention from the
activity they are performing [19]. Similar gaps arise between
HCI experts and software engineers and HCI experts and end
users [7, 16]. These clashes among cultures become
particularly evident when the system requires end users to
perform development activities. The problem is thus how to
allow end users to define and develop their applications
according to their own style of reasoning and to their mental
models of the activities to be performed [19]. Furthermore, the

achievement of complex activities by end users in their work
environment requires the collaboration among end users of
different cultures and experience. This will be illustrated in the
example where shop foremen, line operators, and service
engineers must collaborate in a production activity. End users
from different communities also develop different user
dialects, skills, knowledge, and notation [7]. Therefore,
cultural clashes also characterize the activities and
collaboration among end users working on the field. If, during
system design, the clashes among different users’ cultures are
not taken into account, some users may be forced to adopt
specific dialects related to the domain, but different from their
own and possibly not fully understandable, thus making the
collaboration difficult. Therefore, two contrasting
requirements arise: (i) the need of guaranteeing an appropriate
reasoning environment to every participant to the process; (ii)
the need of guaranteeing an appropriate communication
among the different participants. As to the first requirement, it
is necessary that each participant is allowed to reason,
experiment on prototypes and report her/his results using
her/his modeling language and notations, which reflect her/his
mental models; as to the second, it is necessary that different
participants are able to communicate their results to each other
and reach an adequate understanding of the reciprocal results.
To fulfill these requirements we proposed an approach to
uEUD which supports reasoning in the specific language of the
cultural community the participant belongs to. To allow the
proper appropriation [12] of the environment and its tools it is
required to present to the users (both HCI experts, and end-
users and software engineering experts) symbols (icons,
words, sentences) which are familiar to them and easily
perceptible that is environments customized according to the
user culture, to the role of the user and to the platform in use.
Working in these environments each participant develops and
reasons on his model of the interaction process, works on
prototypes and describes his insights and proposed
improvements. To guarantee an efficient communication
among these different participants each environment is
equipped with an annotation tool by means of which the
participant can make observations about the exchanged
information and proposals about possible changes of the
system in order to improve it. In this way, each member of the
team can directly experiment with the system, see and critique
the recommendations and notes of other team members and can
negotiate the system evolution. Hence, the different
workshops allow the creation and management of a shared
knowledge base.

3. AN EXAMPLE OF UNWITTING
DEVELOPMENT

We describe here an example of unwitting development, by
illustrating a prototype we have developed for a factory
automation company [8]. The company is in charge of
developing the software and the user interfaces for the systems
it sells to client companies. The company needs to create
systems for factory automation that are usable for their client
companies, that is easy to learn and to use, and that are
customized for experts in factory automation but not in
computer science. The company has also to develop software
tools for supporting its personnel in the development, testing,
and maintenance of the factory automation systems. The
company personnel is organized into different categories of
end users with different responsibilities and skills, which need

Interaction Design and Architecture(s) Journal - IXD&A, N. 5-6, 2009, pp. 23-30

to perform various tasks with the software tools. Since the
client companies have different needs and habits, we design a
virtual interactive system that can be shaped in different
environments each one specific for a certain type of users.

Diagnostica

Aulomatico@\l\anuale

Macchina ETA

Impostazioni’ Statistiche

»

PEZZO

MOTORE

iy

vAid
TRAIETTORIA

o

7

®|annota| aiuto ‘salva | esci |spegni‘ A | v
Figure 1. An application developed for a factory automation

company. The letters have been added on the screenshot for
the sake of explanation in the text.

IEE

«

I
I

I

>l I«

Area messaggi

<

In Figure 1 a prototype shaped for the assembly line operator,
which is devoted to the control of a pick-and-place robot is
shown. In this case, the assembly line operator needs to have
(i) the possibility to choose among different robot’s use
modalities e.g. automatic, manual, diagnostics (see letter ‘a’ in
Figure 1), (ii) the power to modify the robot’s behavior or the
task it has to perform by picking out the tools s/he needs and
associate them to it (letter ‘b’ in Figure 1), and (iii) the
possibility to access tools like annotation, online help, etc
(letter ‘e’ in Figure 1). The assembly line operator can observe
the behavior of the machine that is shown in the work area (c)
and her/his activity is guided by the messages presented in the
message area (d).

3.1 The Developed System in the Case of

Factory Automation

As pointed out above, the structure of the company requires
the design and development of different environments shaped
for experts in factory automation, HCI experts, and end users
working for the company. Therefore, we adopt the Software
Shaping Workshop (SSW) methodology, already presented in
[4], a meta-design participatory approach that does not end
with the release of the software, but continues throughout the
whole software life cycle. An interactive system is designed as
a network of software environments called SSWs, or briefly
workshops, each of them being either an environment through
which end users perform their activities or an environment
through which stakeholders participate in the design of the
whole system, even at use time. An SSW is designed in
analogy with an artisan or engineer workshop, namely a
workroom where an expert finds all and only those tools
necessary to carry out her/his activities. The SSW network of
an interactive system is organized in three different levels
based on the different types of activities the workshops are
devoted to: the VIS use level includes workshops that are used
by end users to perform their tasks (called application
workshops); the design level includes workshops for

designing and adapting the application workshops in
accordance with the evolving knowledge and user needs
(called system workshops); and the meta-design level includes
the system workshop for software engineers, which allows
them to generate and maintain all the workshops in the
network [8]. In the case at hand, the environments at the design
level are grouped into two levels (see Figure 2).

P < W.SE

/ Iy
z X - design
/ \ level |
¥ X -

..r"/ 7
7 /Weompany 4= —p/ WHel - /

-

_/ /W-Personnel// ,&W__
/‘ ﬁ F 3 ‘/ J.T \ ‘ DESign i

Cd
/T N |

, 7 7 77 7 -
- Smechayica Firsjeciony e UElECIOGY S -
e’ / tests Rl I definition | ¥ updae r i

; = y Z / -

-

//."' / .'_\
’ y, / cal / /assembry T
/ Sl '; I SETEL, VIS use level

company workshops client workshops

Figure 2. The environments for factory automation
configured for the case discussed.

At the upper sublevel, the W-Company environment is
devoted to the company experts who are in charge of creating
all entities to be managed at the lower plane, while the W-HCI
environment is used by HCI experts to check the created
entities. At the bottom sublevel, the W-Personnel environment
is used again by the company experts to generate the final
environment, the W-Client, that will be used by the company
end users. In our example the W-Client is used by the shop
foreman.

i Paaw mrpeales e

Coroidd Al CMCh TN JRAG AR] W OHE POl

Figure 3. Unwitting programming: the shop foreman drags
and drops the entity “bottoniera di sistema” (system button
panel) into the canvas representing the background of the
line operator environment being created.

Two different types of activity can be identified, the first is the
software mechanical design and testing of automation systems

Interaction Design and Architecture(s) Journal - IXD&A, N. 5-6, 2009, pp. 23-30

and the second is the use of these automation systems in the
client factory. The first activity is supported by the use of
environments shaped for company’s professionals, e.g.
mechanical and software testers and mechanical programmers,
while the second activity is performed by the use of
environments devoted to client company’s employee, e.g.
production managers and assembly line operators (Figure 1).
Communications between different levels may occur from top
levels to bottom levels and vice versa. Two types of
documents can be exchanged: (i) programs and documents
specifying the environments, for example the shop foreman
creates and makes available an environment to the line
operator; (ii) annotations about usability problems, new user
needs or proposed improvements: for example, line operators
can make available to the shop foreman requests for
developing new tools to be used in their environments;
whereas at the VIS use level, line operators can communicate to
HCI experts their problems in understanding the meaning of
certain data representations or how to use various tools.

3.2 A Bargain Between Shop Foreman and

Line Operator

In this section, we describe a scenario in which the shop
foreman, using W-Client, unwittingly programs the
application workshop for the line operator through simple
drag-and-drop activities (both environments are highlighted
in Figure 2). The line operator, using her/his environment can
communicate her/his difficulties. Figure 3 illustrates a
snapshot of the W-Client at hand, during the interaction of a
shop foreman for creating the line operator environment
shown in Figure 1. In Figure 3, the shop foreman has already
selected the entity “canvas” by choosing it from the menu on
the right side: the “canvas” is the background of the
environment that shop foreman is going to create. S/he has
already added other entities and now is dragging and dropping
the entity ‘“bottoniera di sistema” (system button panel),
which will appear on the “canvas” entity in its initial state.
This is an example of unwitting programming. In Figure 4 the
results of the shop foreman’s activity on the line operator
environment are presented.

A Maaw mpralve e e

T mos "
CONEOEIE 4redh CBCE WTOLE | DA AR] DA OHD Do

Figure 4. Unwitting programming: the shop foreman is
creating the line operator environment shown in Figure 1.
The button “automatico” (automatic) is located on the
operative button panel.

S/he is now positioning a new button on the operative button
panel. Once the shop foreman considers the realization of the
line operator environment completed, s/he releases it using the
“salva officina” functionality. This functionality creates an
instance of the line operator environment and makes it
available to her/him. The line operator accesses the new
environment and starts working with it. In performing her/his
activity s/he finds usability problems: s/he does not
understand how to perform the robot’s diagnostics because the
provided strategy is different from the one s/he traditionally
adopts in her/his application domain. Therefore, s’he chooses
the “annotation mode” selecting the “annota” button from the
“tools” menu. Then s/he selects the “Diagnostica” button. A
buttons panel appears, providing tools that permit the
insertion of textual annotations.

The system opens the annotation form and s/he annotates
her/his observations. Figure 5 shows a screenshot taken
during the annotation of the line operator environment
performed by the line operator. The shop foreman receives the
observations and discusses them with all the other members of
the design team to satisfy the end-user requests. Therefore, the
design activity is developed as a bargaining activity among
the different end users and designers, aimed at balancing
requirements on the system that arise from the different points
of view.

ALlSimahes

Stalislicha

Diagino liea-rgag Lo zi
i H‘\.

Macchina E1 | &

7]
|- i {ui-.qn]uh-.s:u-ri 1.'-|:-ur'] F v !

Figure 5. The line operator annotates the assembly line
environment to communicate her/his problems to the
designers. The circle has been added on the screenshot for
the sake of explanation in the text.

4. BANCO ARCHITECTURE

The B-architecture emerges from an evolutionary process of
experiences based on unwitting programming and
participatory design [24]. The novelties of this architecture are
related to the need of the following uEUD requests: (i) system
customization, in that users need to access systems
customized to their culture, to their roles and to the platforms
they use; (ii) system evolution, in that users need to evolve
their systems according to their evolving needs and habits;
(iii) communication, in that users need to communicate with
each other exchanging not only documents but also
prototypes that materialize their experiences. In the
architecture presented in Figure 6, on the server side, there are
two archives: (i) the archive of the BANCO framework

Interaction Design and Architecture(s) Journal - IXD&A, N. 5-6, 2009, pp. 23-30

elements; and (ii) the archive of the knowledge base of the
current application. The BANCO framework elements archive
contains the documents that specify the BANCO frameworks.
This archive is accessible by the whole community of BANCO
users and developers. The knowledge base of the current
application archive contains the working documents generated
in the design and development of the environments of a
specific application. This archive is accessible by the
community of the developers of the specific application.
Designers can store a copy of a working document as a BANCO
framework, making it available to the whole community of
BANCO implementers. In the example, the shop foreman is
initially developing the line operator environment, as shown
in Figure 3 and 4. These documents, which specify the line
operator environment, are executable (by clicking on the
“Simula” button). During this activity, the shop foreman can
store these documents in the knowledge base of the current
automation application. The documents become available to
every designer in the design team. At the end of this activity,
the shop foreman releases the line operator environment by
selecting the salva officina button. As a result, a copy of the
set of documents s/he has defined is stored in the BANCO
framework archive and becomes available to the line operator
and to the BANCO community developers.

User
% High-level
Browser BANCO
architecture

ECMAScript call l IDOM

Wiewer

BANCO client-side application

BANCO configuration

BANCO enaine specification

HTTP HKML
request data

Webr Server

BANCO server-side application ‘

— B

I
R ~— -
BANCO framework Knowledge base of the
elements current BDDUCBIIOH

Server-side
systems

Figure 6. A high-level view of the B-architecture.

The BANCO framework elements archive represents the
blackboard for the design team members. The Knowledge base
of the current application archive represents the blackboard for
the users that are developing their own environment. The B-
architecture comprises on the server side a BANCO server-side
application, which manages the retrieve of the BANCO
framework elements and the retrieve and storage of the
working documents stored in the Knowledge base of the
current application archive. On the client side, an instance of
the BANCO engine, currently an ECMAScript program,
interprets the configuration documents, i.e., the BANCO
framework elements and the working documents retrieved on
the server side. It creates the static part of the system, using a
library of instantiation functions, and manages the dynamic of
the system (system’s reactions to user’s actions), by using a
library of interaction management functions. The
configuration documents specify content, organization,
localization, materialization and interaction dynamics of the
current configuration. The presence of a Web browser equipped

with a Viewer allows the dynamical creation of the current
configuration and the management of the I/O interaction
between the user and the system by communicating with the
BANCO engine in different steps of the session.

4.1 The Tools for BANCO Customization

Current BANCO eclements’ implementations are based on
different languages, which permit the customization of the
different environments. In fact, the ability of a system to be
customized to the user’s culture, her/his role, and the platform
in use requires four level specifications: 1) content and
organization, 2) localization, 3) materialization components
and 4) interaction dynamic level specifications. These requests
lead us to the definition of two XML-based specialized
languages (IM’L and LML), one SVG-based or HTML-based
language, the Template Language, and to the use of
ECMAScript to steer the dynamics of the interaction.

IM?L (Interaction Multimodal Markup Language) is an XML-
based markup language whose elements are documents that
describe a virtual environment as a “space of opportunities”
abstracting from users’ culture, their roles, and the platforms
they use to access the environments.

IML is defined by a XML Schema called IM’L schema. Each
node in the schema defines a type of virtual entity (ve), which
may appear in an IM’L system. A ve is a dynamic system that
captures the user inputs, compute the reaction to them and
materialize its own state - the results of the computation — in a
form perceivable by the user [15].

For example, a type of ve “operator” indicates a component
associated to the execution of a computational activity
without the need to specify the materialization properties
related to this component. At the materialization time, this ve
“operator” will be instantiated, for example, in a button or in
or a menu item according to the system context of use. An
“operator” belongs (is superimposed) to an “operatorSet” (for
example, a menu item belongs to a menu, a button belongs to a
button panel).

Each node of the IM?L schema has the following format:

name
the number of states in its dynamics

the list of the names of the admissible states of the ve
the initial state that the ve has as it is instantiated

the next states and output functions for each
admissible state of the ve

[O I S

6. the procedures associated to each state (the initial
state is generally associated to the “null” procedure)

7. the emotion associated to each state (for example, a
light alarm can be in two states: normal, which
communicates a relaxing emotion, and alarm, which
transmits an alert emotion)

8. the ve to which it is superimposed

9. order and topological attributes in the ve to which it
is superimposed

10. the ves which can be superimposed to it

The IML schema is used to define a specific system, i.e. an
environment dedicated to one application.

Through the unwitting programming technique, end users
have the possibility to design proper applications for specific

Interaction Design and Architecture(s) Journal - IXD&A, N. 5-6, 2009, pp. 23-30

domains. In our approach, the end user during design exploits
two different XML documents that are able to specify the
context of the application domain: a workshop schema (W-
schema) and a workshop garden centre (W-garden).

The W-schema describes a subset of the IM’L schema reporting
only the ve types suitable for a specific domain. For example,
the “operator” node in the W-schema of the shop foreman
workshop indicates that, in this domain, the possible
operators are only: menu items, buttons and sliders.

The W-schema is used to define a set of IM’L documents which
constitute a W-garden. Each document in the W-garden
describes the initial state of a ve which can be used in the
application. The W-garden is stored in the BANCO Framework
Elements archive on the server. When required by the
interaction process, the client retrieves the document from the
server and feeds it to the BANCO Engine. The BANCO Engine
generates the corresponding ve by interpreting the document
which describes the initial state of the ve and builds a DOM
tree which is joined to the DOM tree describing the current
state of the whole system: this action recalls the grafting of a
branch on a tree.

Back to the example, let us examine the IM’L definition of the
“salva officina” button, appearing on the left bottom corner of
Figure 3 and 4. When the shop foreman selects the button, the
procedure to save the current defined line operator
environment which appears in the work space is stored as a
framework and made available to designers and users. Its IM’L
definition states that: an active element exists, it has a name —
store framework activation-two states — selected, non
selected-, its initial state is non-selected, its selection fires the
save-framework procedure: moreover the active element is a
normal element- that is it not an alarm or a “requiring special
attention” button; it is the first of an ordered set of active
elements — shop foreman actions- , to be represented in the
same container — shop foreman action container.

The end-user using the W-schema and W-garden is able to
design final applications in an abstract way that is the
graphical attributes (dimension, colors, shape...) of the ve are
not instantiated. The Template Language (TL) specifies how
the ve states must be materialized (i.e. represented on the
screen or emitted if sound, etc.). The elements of TL are SVG
(Scalable Vector Graphics) or HTML documents, which specify
shape, relocatable geometry, and graphical properties (such as
the lines thickness) of the materialization of each state of each
ve whose initial state is described in W-garden. These
documents have a common format described by a TL schema.

In the salva officina functionality, TL states that rectangular
shapes are formed by four orthogonal, linked segments, that
the salva officina button is formed by segments of given
thickness, length: also defines black, light and dark gray RGB
coordinates. Moreover, TL states that Italian texts are in Arial,
of given size and style.

LML (Localization Markup Language) is an XML-based
markup language for the specification of the localization
properties of an interactive system, i.e., of those properties that
in an interactive IM’L-based system characterize geometry,
topology, colour representation, shapes and text, depending
on the culture of the user, the user’s role and the platform s/he
uses as well as user physical capabilities. LML is specified by
the LML schema in which for each ve in W-schema the
localization properties are defined. The properties currently

taken into account are shape, colour, orientation, size,
position, order, and thickness.

For the salva officina functionality, its LML definition states
that the element store framework activation is defined
according to the Italian culture, mechanical technical
standards, and company style guideline. The Italian culture
states that the name will be in Italian language, that the order
of representation of active elements in a button panel is from
left to right; and that salva officina being the first must be on
the left of the action container. Technical standards suggest
that the name is “salva officina” and that the colours of
normal active element state representations should be
relaxing. Company style guidelines state that such an active
element will be a button, that active elements like buttons are
represented as rectangular shape of black colour; that ordered
sets of active elements are organized in button panels, and that
salva officina must be coloured in /light gray in the non-
selected state and dark gray in the selected state.

4.2 Use of the Tools for BANCO

customization

When a user accesses the workshop, by clicking on its icon,
the Bowser loads BANCO engine from the archive of BANCO
frameworks. BANCO engine starts the instantiation of a system
or an application workshop by:

- checking the user locale

- loading IMML specification of the workshop of the
application from archive of the BANCO framework

- loading LML specification of the workshop fitting the
user profile from archive of BANCO framework

- loading current templates of the workshop associated to
the application from archive of BANCO framework

- localizing the templates according to LML document

- making the initial state of the workshop available to the
user

BANCO engine creates a new ve, when required by the
interaction process at a certain time t, by:

- loading IMML specification of the ve from archive of
BANCO framework

- using available templates and LML document to localize
the templates pertaining to the ve at hand

- creating a ve - DOM tree which specifies the ve at hand

- joining the ve - DOM tree to the application A-DOM tree
describing the state of the application at time t

- materializing the updated A- DOM tree by externalizing
the application state at t+1

These languages and libraries are used to create the framework
elements. A BANCO framework is composed of the following
documents:

— The HTML access page: it allows the users to identify
themselves. On the base of the wusers’ identification,
provides data to retrieve the user’s profile, the role profile,
and the platform profile.

— The XML profile document: describes the user activity, the
user role and a link to the associated localization
document.

— The Starter document: it specifies user, user’s role, and
platform. The Starter document is interpreted by the
browser’s viewer, which retrieves the set of configuration
documents in the BANCO framework elements archive and

Interaction Design and Architecture(s) Journal - IXD&A, N. 5-6, 2009, pp. 23-30

in the Knowledge base archive on the system server side,
according to the profiles specified in the Starter. The Starter
document is written in the language chosen for the system
materialization (e.g. SVG or HTML) based on the users’
preferences, the device in use (e.g. desktop PC or PDA) and
the Web browser used for accessing the system.

- System Initial State Specification is the IM?L document
that specifies the static part of content and organization of
the system initial state;

— Components Initial State Specification is a set of IM2L
documents, each one specifying a type of entity that can be
instantiated during the interaction process to modify the
state of the system;

- Localization Documents, written in LML language,
specifying the localization properties of the system, in
particular geometry, topology, colours, shape and text.

- Templates are SVG-based or HTML-based documents, each
one describing the physical materialization of a type of
entity composing the system.

— BANCO engine’s instantiation library: set of functions that
manage the materialization of the initial state of the
interactive environment.

— BANCO engine’s interaction management library: set of
functions that manage the interaction between the user and
the interactive environment.

If the Starter document is an HTML document, the HTML
Templates are used and the whole system will be an HTML
system. If the Starter document is an SVG document, the SVG
Templates are selected and the whole system will be an SVG
system. In this case, the system needs an SVG viewer in the
template to be interpreted. Unlike HTML, SVG allows a) the
management of the screen at pixel level, i.e., annotations can
be associated to every segment of an image; b) the
management of the shapes. Therefore, an HTML version of a
system, defined by the same IM?L and LML documents, is
degraded with respect to its SVG counterpart.

In the current implementation, we adopt as SVG Viewer the
Adobe SVG Viewer Plug-in [1]. We also chose to manage both
the archive of the BANCO framework elements and the one of
the Knowledge Base of the current application with eXist, an
open source native XML database. The BANCO server-side
application is written using PHP scripting language [22].

5. CONCLUSION

This paper introduces unwitting end-user development and the
BANCO architecture, which is designed to support unwitting
end-user development. An interactive system implemented
according to the BANCO architecture is localized to its user
culture, to the user’s role, and to the platform in use. To reach
this goal, three XML languages, which specify an interactive
system at different levels of abstraction, are introduced. IM°L
describes the — abstract and internationalized — content of an
interactive system, i.e., its functional components as well as its
logical structure. LML describes the localization properties
(e.g. geometry, topology, colour representation) that depend
on end user culture, on end user role and on platform in use as
well as their physical capabilities. Finally, TL describes how to
materialize the interactive system customized for a given end
user. A set of documents written in these languages, the
BANCO framework, is interpreted by the BANCO engine to
create and manage an interactive environment, a space of
opportunity, customized to end-user culture, end-user role,

and platform in use. The localization of the environments and
of the tools they offer to users’ habits allows the appropriation
process. Not all the stakeholders involved in the process of
developing and maintaining application workshops for uEUD
are unwitting programmers (Figure 2). Software engineers are
experts in programming and often HCI experts and some
domain experts may also have some programming experience.
The BANCO architecture allows to support also their work
permitting the instantiation of interactive environments that
make their programming activities easier and make easier the
development of consistent application workshops.

6. ACKNOWLEDGMENTS
The authors would like to thank the ETA Consulting in Brescia
(and particularly Ing. Silvano Biazzi) for their collaboration in
the case study and the reviewers for their useful comments. The
present work is partially funded by the 12-1-5244001-25009
FIRST grant of the University of Milan.

7. REFERENCES
[1] Adobe SVG viewer 2008. http://www.adobe.com/svg/.

[2] Alexander, C. 1977. A Pattern Language: Towns,
Buildings, Construction. Oxford University Press.

[3] Aurias, E., Eden, H., Fischer, G., Gorman, A., and Scharff, E.
2000. Transcending the individual human
mind—creating shared understanding through
collaborative design. ACM Transactions on Computer-
Human Interaction (TOCHI), 7, 1, (2000), 84-113.

[4] Borchers, J. 2001. A Pattern Approach to Interaction
Design. Wiley.

[5] Brancheau, J. C., and Brown, C. V. 1993. The Management
of End-User Computing: Status and Direction. ACM
Computing Surveys. 25, 4 (1993), 437-482.

[6] Carrara, P., Fresta, G., and Rampini, A. 2000. Interfaces for
geographic applications on the World Wide Web: an
adaptive computational hypermedia. In Proceedings of
the 6th ERCIM Workshop on “User interfaces for all”
(Florence, Italy, October 25-26, 2000). 341-342.

[7] Costabile, M. F., Fogli, D., Mussio, P., and Piccinno, A.
2006. End-user Development: The Software Shaping
Workshop Approach. In End-User Development, H.
Lieberman, F. Paterno and V. Wulf, Eds. Springer,
Dodrecht, The Netherlands, 1-8.

[8] Costabile, M. F., Fogli, D., Mussio, P., and Piccinno, A.
2007. Visual interactive systems for end-user
development: A model based design methodology. IEEE
Transactions on Systems, Man and Cybernetics - Part A:
Systems and Humans. 37, 6 (2007), 1029-1046.

[9] Costabile, M. F., Mussio, P., Parasiliti Provenza, L., and
Piccinno, A. 2008. Advanced Visual Systems Supporting
Unwitting EUD. In Proceedings of the Working
Conference on Advanced Visual interfaces (Napoli, Italy,
May 28 - 30, 2008). AVI'08. ACM, New York, NY, 313-
316.

[10] Costabile, M. F., Mussio, P., Parasiliti Provenza, L., and
Piccinno, A. 2008. End users as unwitting software
developers. In Proceedings of the 4th International
Workshop on End-User Software Engineering (Leipzig,
Germany, May 12, 2008). WEUSE '08. ACM, New York,
NY, 6-10.

Interaction Design and Architecture(s) Journal - IXD&A, N. 5-6, 2009, pp. 23-30

[11] Crane, D., Pascarello, E., and James, D. 2005. AJAX in
action. Manning Publishing Company.

[12] Dix, A. 2007. Designing for Appropriation. In
Proceedings of the XXI Conference on People and
Computers (Lancaster, UK, September 3-7, 2007). HCI
2007. 7-10.

[13] Esselink, B. 2000. A practical guide to localization. John
Benjamins.

[14] Fischer, G. 2002. Beyond ‘Couch Potatoes’: From
Consumers to Designers and Active Contributors.
FirstMonday (Peer-Reviewed Journal on the Internet),
Available at
http://firstmonday.org/issues/issue7 12/fischer/.

[15] Fogli, D., Fresta, G., Marcante, A., and Mussio, P. 2004.
IM2L: a user interface description language supporting
electronic annotation. Workshop on Developing User
Interfaces with XML: Advances on User Interface
Description Languages (Gallipoli, Italy, 2004) AVI 04.

[16] Folmer E., van Welie M., and Bosch J. 2005. Bridging
patterns: An approach to bridge gaps between SE and HCI.
Journal of Information and Software Technology. 48, 2
(2005), 69-89.

[17] Garrett, J. J. 2005. Ajax: A New Approach to Web
Applications.
http://www.adaptivepath.com/ideas/essays/archives/0003
85.php

[18] Lieberman, H., Paterno, F., Klann, M., and Wulf, V. 2006.
End-User Development: An Emerging Paradigm. In End-

User Development, H. Lieberman, F. Paterno and V. Wulf,
Eds. Springer, Dodrecht, The Netherlands, 1-8.

[19] Majhew, D.J. 1992. Principles and Guideline in Software
User Interface Design. Prentice Hall.

[20] Mussio, P., Pietrogrande, M., and Protti, M. 1991.
Simulation of hepatological models: a study in visual
interactive exploration of scientific problems. JVLC. 2, 1
(1991), 75-95.

[21] Petre, M., and Blackwell, A. F. 2007. Children as
Unwitting End-User Programmers. In Proceedings of the
IEEE Symposium on Visual Languages and Human-
Centric Computing (Coeur d’Aléne, Idaho, USA,
September 23-27, 2007). VL/HCC 2007. 239-242.

[22] PHP 2008. http://www.php.net/

[23] Repenning, A., Ioannidou, A. 2006. What makes End-user
development tick? 13 Design Guidelines. In End-User
Development, H. Lieberman, F. Paterno and V. Wulf, Eds.
Springer, Dodrecht, The Netherlands, 51-85.

[24] Schuler, D., and Namioka A. (eds.) 1993. Participatory
Design - Principles and Practices. Lawrence Erlbaum
Associates.

[25] Whitley, K. N., and Blackwell, A. F. 2001. Visual
Programming in the Wild: A Survey of LabVIEW
Programmers. JVLC. 12, 4 (Aug. 2001), 435-472.

