Interaction Design and Architecture(s) Journal - IXD&A, N. 5-6, 2009, pp. 17-22

A Model-based Approach to Address the Design of Web
2.0 Applications based on Web Services

Fabio Paterno

Carmen Santoro

Lucio Davide Spano

CNR-ISTI - HIIS Laboratory
Via Moruzzi 1, 56124, Pisa, ltaly

{fabio.paterno, carmen.santoro, lucio.davide.spano}@isti.cnr.it

ABSTRACT

Creating an interactive application based on pre-existing
functionalities poses a number of novel issues in the design
process. We discuss a method, associated with a new model-based
language and a supporting tool, which aims to address such issues
in multi-device contexts. One specific aspect of this method is the
possibility of supporting composition of user interfaces associated
with different services. In addition, the possibility to specify
dynamic user interfaces, Web services accesses and scripts allows
designers to declaratively describe Rich Internet Applications as
well.

Keywords
Model-Based Design, Multi-device Environments, User Interface
Design, Web Services.

1. INTRODUCTION

Model-based approaches for Ul design aim at supporting user
interface design by means of some representations (models) of the
aspects that are supposed to be relevant in the UI software
lifecycle. This involves the identification and representation of the
characteristics that are meaningful at each design stage, and
mainly highlights one of the most difficult parts of the work:
identifying what characterizes a Ul without having to deal with a
plethora of low-level implementation details that can distract the
designer from the most important issues. After having identified
such characteristics, the next issue is specifying them through
suitable languages that can enable simple integration within
software environments, so as to facilitate the work of the
designers.

The design of interactive multi-platform systems has further
stimulated interest in model-based approaches in HCI. In the
design and development of such systems the use of model-based
approaches has revealed to be useful, especially through the
capture and modelling of different levels of abstractions in which
it is possible to gradually move from aspects that are technology-
neutral to more concrete, platform-dependent detailed aspects. In
such a way it is possible to start with a general abstract vocabulary
and then obtain concrete languages for each type of platform by
just refining the abstract language.

However, recently, the design of such systems has become even
more challenging. Indeed, not only it is required that the same
interactive application be accessible from different devices, within
different contexts of use, but in addition the way in which such

interactive applications are built/created has changed, since there
is the need to reuse existing code for reducing development time
and effort. An example of this can be seen from the role that Web
Services are playing in the development of interactive
applications. Indeed, the increasing availability of functional units
within Web Services has driven the need to develop methods that
are able to exploit such pre-existing functionalities by including
them into more composite interactive applications. In particular,
some heterogeneous issues have to be faced by the designers in
this case. First, the need for exploiting some (generally small)
legacy functionalities that were developed without accounting for
human interaction, since they were basically intended to support
computer-to-computer (service-to-service) communication.
Therefore, the first issue is how to obtain the UI for such
functionality, possibly in a semi-automatic way, so that it can ease
the work of the designer. Secondly, even when a UI for such
portions of functionalities is available, there is the issue of
including and integrating pre-existing user interfaces associated
with functionalities into new, composite ones, and possibly
support the designer during such composition.

In the paper, after discussing some related work we describe the
main features of our approach for designing user interfaces for
Web Services. We also introduce the dimensions of a design
space for composing user interfaces in such context. Afterwards,
we express the requirements that have driven the development of
MARIA, an XML-based language for describing user interfaces at
various abstraction levels. Then, we introduce an authoring
environment aiming to support the model-based approach
discussed in the paper. Lastly, some conclusions and directions
for future work are provided.

2. RELATED WORK

Several model-based approaches have been put forward in the
field of multi-device Uls. A sign of the maturity of this area can
be seen by the recent interest in defining international standards
connected with it (e.g.: new W3C Group on Model-based User
Interfaces: http://www.w3.0rg/2005/Incubator/model-based-ui/)
and their adoption in industrial settings (e.g.: Working Group in
NESSI NEXOF-RA IP, http://www.nexof-ra.eu/).

In particular, a number of approaches have been proposed to
support descriptions of logical user interfaces. UIML [1] was one
of the first model-based languages targeting multi-device
interfaces. It structures the user interface in: structure, style

Interaction Design and Architecture(s) Journal - IXD&A, N. 5-6, 2009, pp. 17-22

content, behaviour, even if it has not been applied to obtain rich
multimodal-user interfaces.

XForms [http://www.w3.org/MarkUp/Forms/] is a W3C initiative,
and represents a concrete example of how the research in model-
based approaches has been incorporated into an industrial
standard. XForms is an XML language for expressing the next
generation of Web forms, through the use of abstractions to
address new heterogeneous environments. However, the language
includes both abstract and concrete descriptions (control
vocabulary and constructs are described in abstract terms, while
presentation attributes and data types in concrete terms). XForms
supports the definition of a data layer inside the form. XForms is
mainly used for expressing form-based Uls and does not seem
particularly suitable for supporting other interaction modalities,
such as voice interaction. UsiXML (USer Interface eXtensible
Markup Language) [3] http://www.usixml.org is an XML-
compliant markup language developed at University of Louvain-
la-Neuve, which aims to describe the UI for multiple contexts of
use. UsiXML is decomposed into several meta-models describing
different aspects of the UL There is also a transformation model
that is used to define model to model transformations between the
different models. The authors use graph transformations for
supporting model transformations, which is an interesting
academic approach with some performance issues. TERESA
XML [5] defines several abstraction levels for expressing the
characteristics of a user interface. Among such levels, one (the
concrete interface) is specified through a number of platform-
dependent languages, which are refinements of the abstract level,
which the user interface using a platform-neutral vocabulary:
interactors (describing single interaction objects), composition
operators (indicating how to compose interactors), presentations
(indicating the elements that can be perceived at a given time).
Various modalities have been supported through this approach.
However, it does not support data and event models.

One issue with such model-based approaches is that they have not
explicitly addressed the recent increasing trend in software design
aiming to build atomic software components, called Web services,
that are available in a distributed settings. Thus, applications have
to be assembled starting from such pre-existing building blocks.
Especially for enterprises this has represented several advantages
in terms of reusing the code, augment productivity and leveraging
integration processes. Some work has been dedicated to the
generation of user interfaces for Web services [7, 8] but without
exploiting model-based approaches. Previously, there have been
approaches investigating the possibility of automatic generation
with model-based support for applications based on Web services
[4] but such approaches work well only with not too complex
cases and when the application domain is well-known. In [9] there
is a proposal to extend service descriptions with user interface
information. For this purpose the WSDL description is converted
to OWL-S format, which is combined with a hierarchical task
model and a layout model. We follow a different approach, which
aims to support the access to the WSDL without requiring their
substantial modifications in order to generate the corresponding
user interfaces, still exploiting logical interface descriptions.
Therefore, model-based approaches have to cope with further
requirements. There is less need to design an application from
scratch, but they have to support interactive application
development starting from small functionalities (services) that are
already available, even if these were not built having in mind that
particular application. In addition, the need of accessing the same

service through an increasing number of device types (in
particular mobile) available in the mass market, sometimes able to
exploit a variety of sensors (e.g. accelerometers, tilt sensors,
electronic compass), localization technology (such as RFIDS,
GPS) and interaction modalities (multi-touch, gestures, camera-
based interaction) have further urged the identification of suitable
universal declarative languages able to address such composite
number of aspects in a comprehensive specification.

3. THE APPROACH

A top-down approach essentially consists in breaking down and
progressively refine an overall system into its sub-systems, thus it
is particularly effective when the design starts from scratch. In
such cases the designer has an overall picture of the system to be
designed and s/he can refine it gradually and without any
particular constraints.

However, when the designer wants to include already existing
pieces of software like services, this necessarily requires that a
bottom-up approach is considered in the design process in order to
include and exploit in the design not only such legacy, fine-
grained functionalities, but also composite and higher level
functionalities that can result from assembling the elementary
ones. Therefore, what seems the best option is a hybrid solution in
which a mix of bottom-up and top-down approaches is used.

Abstraction Levels

— — Task
i — Abstract

— — Concrete

%— Implementation
Data N

) Granularity

N
Dynamic Behaviour W < G A
N,) ﬁoo @\P@
Perceivable Ul < %{’_ Dy G,
ob]ects{y\'\ ’o%
Ul Aspects

Figure 1. The Design Space for Ul Composition

The problem of automatic or semi-automatic composition of
existing Web services is one important issue in this context.
Indeed, the design and development of an interactive application
based on pre-existing Web services is by definition driven by a
composition-oriented approach. Not only application logic
functionalities have to be composed (for this purpose various
approaches already exist, e.g. BPMN) in order to provide
arbitrarily complex behaviour but also the corresponding user
interface specifications associated with the elementary services
(which can be provided through specific annotations) can be
composed as well.

Interaction Design and Architecture(s) Journal - IXD&A, N. 5-6, 2009, pp. 17-22

In order to better understand how this user interface composition
activity can be carried out we have identified a design space for
this specific activity (see Figure 1).

Three main aspects have been identified as important in order to
compose user interfaces: the abstraction level of the user interface
description, the granularity of the user interface considered, and
the types of aspects that are affected by the Ul composition.
Regarding the abstraction level, since a user interface can be
described at various abstraction levels (task and objects, abstract,
concrete, and implementation), it is straightforward that the user
interface composition can occur at each of them. The granularity
refers to the size of elements to be composed: indeed, we can
compose single user interface elements (for example a selection
object with an object for editing a value), groups of objects (for
instance a navigation bar with a list of news), we can compose
various types of interface elements and groups to obtain an entire
presentation, and we can compose presentations in order to obtain
the user interface for an entire application. It is worth pointing out
that with the term ‘presentation’ we refer to the set of user
interface elements that can be perceived at a given time, a
common example is a graphical Web page.

Lastly, we have to distinguish the compositions depending on the
main Ul aspects that they affect, which are: i) the dynamic
behaviour of the wuser interface, which means the possible
dynamic sequencing of user actions and system feedback (e.g.:
when some elements of the Ul can appear or disappear depending
on some conditions); ii) the perceivable Ul objects (for example in
graphical user interface we have to indicate the spatial
relationships among the composed elements); iii) the data that are
manipulated by the user interface.

More specifically, in the proposed approach first a bottom-up step
is envisaged, in order to analyse the Web services providing
functionalities useful for the new application to develop. This
implies to analyse the operations and the data types connected
with input and output parameters in order to associate them with
suitable elementary abstract Ul objects. Then, there is a step
aiming to define the relationships occurring among such elements.
Such relationships will allow the designer to compose such
elementary objects in composite abstract expressions. We
envisage for this step the use of task model, expressed in
ConcurTaskTrees (CTT) [6], for describing the interactive
application and how it assumes that tasks are performed. In this
case, the Web services can be seen as a particular type of task
(system task, namely task whose performance is entirely allocated
to the application), and the temporal relationships that are
specified in a task model will indicate how to compose such
functionalities. This process (specifying the task model) should be
driven by the user requirements and it also implies some
constraints on how to express such functionalities. Indeed, in

[<wsdi>

<wsdl>

_~Tdcess Home
<wsdl> // \\\
<definitions>

[.] E,—{’ :]>>_$_(]»
</definitions> |

<wsdl:operation name=5Select Room>

<wsd|: input message= xsd: string/: e
]

</wsdl:operation>

<wsdl:operation name=Select Device../>

Set Parameter

</wsdl>

/ .

% DL

Select Room Select Device //a/n‘teis Device

B —r%

order to be able to address the right level of granularity, not only a
Web service will be associated with an application task, but it is
required that each operation specified within the same Web
service be associated to a specific system task. Thus, if a Web
Service supports three operations, then the designer should
associate them with three basic system tasks (first arrow in Figure
2), with the parent task being another application task
(corresponding to the Web service itself).

After having performed this step, we have obtained a first level of
composition applied to the functionalities associated with the Web
Services, and this has been done through the use of task models.
Once we have obtained the task model it is possible (through a
top-down step) to generate the various Ul descriptions, and then
refine them up to the implementation, by using the MARIA
language (second arrow in Figure 2).

4. MARIA

Based on the lessons learned from the analysis of the state of the
art and previous experiences conducted by various groups with
TERESA (see [2] for a test in an industrial setting), we have
identified a number of requirements for a new language suitable to
support user interfaces in ubiquitous environments.

In particular, the following requirements have been identified for
the new language, which were not well supported in TERESA and
similar languages:

* the need to provide the designer with higher control of
the user interface produced, through also an event
model;

* the need for a more flexible dialogue and navigation
model, supporting also parallel interactions;

* the need for a flexible data model, which allows the
association of various types of data to the various
interactors;

* the need to support recent dynamic techniques, such as
Ajax scripts;

* The need to streamline the specifications of the abstract
and concrete languages, in order to make the
specifications shorter and more readable.

4.1 Main Features
A number of features have been included in the language:

a) Data model

We have introduced an abstract description of the underlying data
model of the user interface, needed for representing the data
(types, values, etc.) handled by the user interface. Indeed, by
means of defining an Abstract Data Type/data model, the
interactors (the elements of the abstract or concrete user interface)
composing an abstract [concrete] user interface, can be bound to a
specific type or an element of a type defined in the abstract

A interactive Home
o] ﬁ Device List:

8o

[Entrance | Bedroom J kitchen | LivingRoom | Bathroom | Disconnect |

Get Parameter

Figure 2. The Approach

Interaction Design and Architecture(s) Journal - IXD&A, N. 5-6, 2009, pp. 17-22

[resp.:concrete] data model. The introduction of a data model also
allows for more control on the admissible input that can be
provided to the various interactors. In MARIA XML, the data
model is described using the XSD type definition language.
Therefore, the introduction of the data model can be useful for:
doing some correlations between the values of interface elements
(for instance, the value of one element can vary depending on the
value of the another element), conditional presentation
connections (triggering the activation of a presentation depending
on a certain value associated to an interactor), conditional layout
of interface parts (showing or not a portion of a presentation
depending on the value associated to Ul element), specifying the
format of the input values (depending on the data type it is
possible to specify a certain acceptable template for input values
associated with that data type), application generation from the
interface description (having information on the values associated
with a Ul description enables the actual generation of a working
application).

b) Event model

In addition, an event model has been introduced, at different
abstract/concrete levels of abstractions. The introduction of an
event model allows for specifying at different abstraction levels
how the user interface is able to respond to events triggered by the
user. In MARIA XML two types of events have been introduced:
i) Property change events: events which change the status of some
UI properties (e.g. colours, fonts, ...). ii) Activation events: some
interactors can raise events with the purpose to activate some
application functionality (e.g. access to a database or to a Web
service). This type of event can have both change properties or
script handlers (which have associated a generic script).

¢) Support for Ajax scripts, which allow continuously
updating of fields

Another aspect that has been included in MARIA is the possibility
of supporting continuously updating of fields at the abstract level.
We have introduced an attribute to the interactors: continuosly-
updated= "true"["false"]. The concrete level has the duty to
provide more detail on this feature, depending on the technology
used for the final Ul (Ajax for Web interfaces, callback for
standalone application etc.). For instance, with Ajax asynchronous
mechanisms, there is a behind-the-scene communication between
the client and the server about what has to be modified in the
presentation, without explicit request from the user. When it is
necessary the client redraws the relevant part rather than
redrawing the entire presentation from scratch, thus it allows for
quicker changes and real-time updates.

d) Dynamic set of user interface elements

Another feature that has been included in MARIA XML is the
possibility to express the need of dynamically changing only a
part of the UL This has been specified in such a way to be able to
affect both how the UI elements are arranged in a single
presentation, and how it is possible to navigate between the
different presentations. The possibility to change only a part of a
presentation has been introduced. Therefore, the content of a
presentation can dynamically change (this is also useful for
supporting Ajax techniques). In addition, it is also possible to
specify a dynamic behaviour that changes depending on specific

conditions: this has been implemented thanks to the use of
conditional connections between presentations.

In the next sections we provide a more detailed description of
concepts/models that have been included in MARIA, both for the
Abstract UI and the Concrete UL

4.2 MARIA — Abstract Level

The advantage of using an abstract description of a user interface
is that designers can reason in abstract terms without being tied to
a particular platform/modality/implementation language.

In this way, they have the possibility to focus on the semantic of
the interaction (namely: what the intended goal of the interaction
is), regardless of the details and specificities of the particular
environment considered. In our approach an interface is
composed of one data model and one or more presentations. The
presentation includes a data model and a dialog model, which
contains information about the events that can be triggered by the
presentation in a given time. The dynamic behaviour of the events
is specified using the CTT temporal operators. When an event
occurs, it produces a set of effects (such as performing operations,
calling services etc.) and can change the set of currently enabled
events (e.g. an event occurring on an interactor can affect the
behavior of another interactor, by e.g. disabling the availability of
an event associated to another interactor). The dialog model can
also be used to describe parallel interaction between the user and
the interface. A connection indicates what the next active
presentation will be when a given interaction is performed and it
can be either an elementary connection, or a complex connection
(when a Boolean operator composes several connections) or a
conditional connection (when various conditions on connections
are specified).

There are two types of interactor composition: grouping or
relation, the latter has at least two elements (interactor or
interactor compositions) that are in relation each other. An
interactor (see Figure 3) can be either an interaction object or an
only output object. The first one can assume one of the following
types: selection, edit, control, interactive description, depending
on the type of activity the user is supposed to carry out through
such objects. An only_output interactor can be object, description,
feedback, alarm, text, depending on the supposed information that
the application provides to the user through this interactor. The
selection object is refined into single choice and multiple choice
depending on the number of selections the user can perform. The
further refinement of each of these objects can be done only by
specifying some platform dependent characteristics, therefore it is
specified at the concrete level. All the interaction objects have
associated events handlers in order to manage the possibility to
describe how to react after the occurrence of some events in their
UL The events differ depending on the type of object they are
associated with.

4.3 MARIA — Concrete Level

The concrete description is aimed at providing a platform-
dependent but implementation language-independent description
of the user interface. Thus, it assumes that there are certain
available interaction resources that characterise the set of devices
belonging to the considered platform. It moreover provides an
intermediate description between the abstract description and that

Interaction Design and Architecture(s) Journal - IXD&A, N. 5-6, 2009, pp. 17-22

supported by the available implementation languages for that
platform.

In order to enhance the readability of the language and also for
consistency reasons (cross-references between different models
enabling more consistency because they avoid to replicate the
same data in two different places), we decided to furnish the
concrete user interface only with the details of the concrete
elements, leaving the specification of the higher hierarchy in the
abstract meta-model. At this level differences associated with the
specific characteristics of the platform will be modelled. For
instance, when focusing on a iPhone platform the concrete user
interface language has to express the fact that interaction is carried
out through the use of not only a simple touch-based interface
(which is also to some extent available on PDA), but it has also to
handle multi-touch events. Therefore, on this platform, there is the
need of introducing and modelling a different group of events, the
so-called touch property events, which includes touch start
(activated when a finger tap the screen surface), touch move
(triggered when a finger moves on the surface), touch end
(activated when a finger leaves the screen surface). In addition,
the zoom gesture event (which is done through a multi-touch
interaction) notifies that a zoom command has been recognized by
the system and contains the scale factor that should be considered
for zooming. Another peculiar characteristics of the iPhone is the
existence of an accelerometer. In this case, the concrete user
interface language has to support the specification of the current
screen orientation and also to support the associated events. A
more detailed description of MARIA is in [10].

5. TOOL SUPPORT

The authoring environment supporting MARIA and the associated
method is a tool composed of three main sub-environments.

The first one, “Tasks-Services Binding Editor”, is aimed at
supporting the associations between the tasks included in the
model corresponding to the application to be developed and the

Web services that the designer wants to include. In order to do
this, the designer has to access the repository or the editor of task
models and to access the URI where the Web services are made
available. In addition, within this module, it is also possible to
import some annotations associated to the Web services, and
which provide further information about how the functionality
included in the Web service will be finally rendered in the Ul
Once such task-Web service association has been carried out, a
dedicated module (“Ul Composer/Transformer™), also through the
use of possible annotations, is then be able to produce a first draft
of the corresponding Abstract/Concrete User Interface (AUI/CUI)
description in which all such various pieces of information (tasks,
Web services, annotations) are exploited.

The AUI/CUI thus obtained are the output of the first module and,
in turn, the main input to another module (the “User Interface
Editor”) which is specifically aimed at supporting designers in
refining the AUI/CUI depending on the specific needs and
requirements of the application considered. Such User Interface
Editor module exploits the “Transformation engine” module to
obtain a CUI from an AUI, and then a user interface
implementation (FUI) from a CUI description.

The rules included in the Transformation engine are defined in a
specific model, the “Transformation model”, which allows for
specifying the transformations that enable passing from a Ul
description to a more concrete one. The usefulness of having a
Transformation Editor as a separate module lies in the enhanced
flexibility for designers to easily specify the transformations to be
supported from time to time and avoid having them hardwired in
the code.

The environment contains a set of generators, under development,
each of which implements the transformations into specific
platform-dependent description languages.

Figure 3 shows the interface for editing a CUI model: the left part
contains an interactive tree diagram of the interactors and

Fle Edt Tooks Help

sJ&'H %[amil| m AN

) 1) [x]SER

o~ ml %
& Schema

[Flight_search_presentation
-{] Flight_saarch_presantation_{
- {3 Entering_data_for_baoking
[&] Book_resulk_presentation

| Desin | source

H Bgmupmg booking_content
8 “refation
81D grouping: hoaking_form_grid

properties | events | attributes

TeutFicldType

text

| label Cardholder's name
length 30
hidden no

First name: |text field

8 it
= = E."g
- row
€2 connection
[§, slemertary external 18 “cel 2 “cel
S clementary extemal B Brot edt 8 Bte edt

@aruhmder's name |text field)

“Last name text field

8 “row
8 “cell 8 “call
-8 (Ftext edit 8 Ptext edit

Card number |tesxt fisld

-8 row

Editor | Output

JTree: Selected element: Flight_search_presentation_result

JTree: Selected element: Flight search presentation
JTree: Selected slement: Flight_search presentation result

Document Designer Component: Selected element: grouping: besking_title_grouping

Document. Designer Component: Selected element: grouping: main_result_presentacion
Document. Designer Component: Selected element: grouping: result_title grouping

Figure 3. The Environment Supporting the Model-based Approach.

Interaction Design and Architecture(s) Journal - IXD&A, N. 5-6, 2009, pp. 17-22

interactor compositions defined in the model. The central part is a
direct manipulation interface for editing the model, where each
interactor composition is a container for different interactor
representations. All the elements of the model are classified
according to their interaction semantics taking into account the
target platform. For instance, a choice with low cardinality in a
desktop CUI will be represented as a radiobutton, showing all the
possible choices with the default option selected. All the interactor
representations, which reflect their semantics, can be dragged
from one container to another.

The right part of the interface is a toolbox for adding new
interactors to the model (it shows only the allowed elements for
the currently selected interactor).

The user can also edit the interactor attributes through the attribute
list on the second tab, or set the event handlers through the event
tab.

The environment also includes the Tasks-Services Binding Editor.
In this case, the main part contains the CTT model using a
hierarchical tree representation: the children of a node are the
decomposition of the parent. The nodes at the same level are
connected using different temporal operators. Each task is
categorized as Abstraction, User, Interaction and System. The
System tasks can be bound to a Web service operation from the
repository on the right part, where different services with their
operations and data types are listed. The CTT model enhanced
with the Web service binding and annotations, which are
represented on the left part, is used to generate the first AUI
model for the application, which can be then modified by the
designer using the AUI/CUI editor

6. CONCLUSIONS AND FUTURE WORK

In this paper we present our method for developing Uls for
applications that are built by accessing Web Services. The
described approach exploits a multi-layer framework of languages
for describing Uls through a mix of bottom-up and top-down
phases. We have introduced the corresponding authoring
environment to ease the use of MARIA and associated
transformations, which is under development. We have also
discussed how the new MARIA language is able to support
specification of flexible interactions exploiting such Web services
and scripts, for then generate implementations for different types
of devices.

Future work will be dedicated to extending the design space of
user interface composition in order to address a wider set of cases,
carrying out a usability test of the authoring environment under
development to support the proposed approach, and applying the
MARIA language in the OPEN EU project (http://www.ict-
open.eu), which we coordinate, in order to support a richer set of

migratory user interfaces. Such interfaces have the ability to
follow the user across various interaction devices, adapting to the
changing context and preserving their state even when users
change devices.

7. ACKNOWLEDGMENTS

We gratefully acknowledge support from the EU ServFace Project
(http://www.servface.eu).

8. REFERENCES

[1] Abrams, M., Phanouriou, C., Batongbacal, A., Williams, S.,
Shuster, J. UIML: An Appliance-Independent XML User
Interface Language, Proceedings of the 8th WWW
conference, 1999.

[2] Chesta, C., Paterno, F., Santoro, C. (2004): Methods and
Tools for Designing and Developing Usable Multi-Platform
Interactive Applications. In Psychnology, 2 (1) pp. 123-139

[3] Limbourg Q., Vanderdonckt J., Michotte B., Bouillon L.,
Lopez-Jaquero V. USIXML: A Language Supporting Multi-
path Development of User Interfaces. EHCI/DS-VIS 2004:
200-220

[4] Mori G., Paterno F., Spano L. D.: Exploiting Web Services
and Model-Based User Interfaces for Multi-device Access to
Home Applications. Kingston, Canada, July 2008, DSV-IS
2008, Springer Verlag, LNCS, pp.181-193.

[5] Paterno F., Santoro C., Mantyjarvi J., Mori G., Sansone S.,
Authoring Pervasive MultiModal User Interfaces,
International Journal of Web Engineering and Technology,
Inderscience Publishers, 4(2) pp.235-261, 2008.

[6] Paterno F., Model-Based Design and Evaluation of
Interactive Applications, Springer Verlag, 1999.

[71 Song, K., Lee, K.-H., 2008. Generating multimodal user
interfaces for Web services, Interacting with Computers,
Volume 20, Issues 4-5, September 2008, Pages 480-490

[8] Spillner, J., Braun, L., Schill, A., 2007. Flexible Human
Service Interfaces, Proceedings of the 9th International
Conference on Enterprise Information Systems, 79-85.

[9] Vermeulen J., Vandriessche Y., Clerckx T., Luyten K. and
Coninx K., Service-interaction Descriptions: Augmenting
Services with User Interface Models, Proceedings
Engineering Interactive Systems 2007, Salamanca, Springer
Verlag.

[10] Paterno F., Santoro C., Spano L.D., MARIA: A Universal
Declarative Language for Service-Oriented Applications in
Ubiquitous Environments, ISTI Report, January 2009.

