
Collaborative web extensions: a P2P approach

Rodolfo Gonzalez1, Sergio Firmenich1,2 , Alejandro Fernandez1, Gustavo Rossi1,2

1. LIFIA, CIC, Facultad de Informática, Universidad Nacional de La Plata
2. CONICET, Argentina

{rgonzalez, sfirmenich, casco, gustavo}@lifia.info.unlp.edu.ar

Abstract. Web extensions are powerful software artifacts that allow end-users to
adapt and enrich a website. These extensions run on the user's web browser as a
single-user software that manipulates available third-party web contents. Many
of them offer some collaborative features that depend on a web application. The
need of two co-depending software artifacts (the web application as back-end and
the web extensions as front-end) increases complexity, making the system harder
to develop and maintain. In this paper we tackle this problem by proposing a P2P
approach to build collaborative web extensions. The approach involves a
middleware and a framework. On the one hand, the middleware serves to manage
the resources offered by the browser so multiple P2P extensions can coexist. It
ensures that the overall performance of the browser is not degraded by the
collaborative web extension. On the other hand, the proposed framework is
intended to allow developers without experience in P2P to create collaborative
web extensions on top of the middleware. This paper discusses the main
challenges of building P2P web extensions, presents the approach, and two case
studies focused on the use of the framework for inexperienced developers.

Keywords: web extensions, collaboration, peer to peer.

1 Introduction

Web extensions [1], [2] are a popular mechanism to adapt third-party websites.
Commonly, a web extension is made of a combination of Javascript, HTML, CSS, and
configuration files. Web extensions can change the browser behavior, introduce
changes to visited websites and also to provide new web pages delivered with the
extension once installed in the web browser. Some well-known techniques such as
mash-ups [3], [4] and web augmentation [5] rest on web extensions. Their purpose may
be quite broad, such as integrating web contents [6], supporting repetitive users tasks
[7], [8], improving accessibility [9], [10], and recommendation-based personalization
[11] among other possibilities. Besides attracting the interest of the research community
as shown by the previous examples, web-extensions are popular among web users that
desire to adapt the web. The extensions repositories for Mozilla Firefox and Google
Chrome show the popularity of these technologies, where thousands of extensions are
available, many of them with thousands of users. Clearly, web extensions are nowadays
the de facto standard to customize the web browser and consequently augment the
user’s experience with the web.

Interaction Design and Architecture(s) Journal - IxD&A, N.49, 2021, pp. 97 - 110

97

Web extensions can communicate with external services (via HTTP requests) which
makes it possible to develop web extensions with collaborative features. A web service
available on a server enables the communication among the same web extension
installed in the browser of different users. When that is the case and regardless of the
complexity of the functionality they offer, such networked extensions are designed in
a client-server architecture. This means that they depend on a server-side
component/service, which increases the technical skills required to create the web
extension. In addition, depending on a server component complicates maintenance and
increases the costs associated with deployment for production.

We argue that building web extensions in a P2P style opens new opportunities to
augment the web, especially when collaboration is involved, by removing the need for
a server component. Following the P2P philosophy, web extensions are designed to
allow users to collaborate by sharing computation power, storage and networking
capabilities of their browsers, and by explicitly solving tasks for one another. In this
paper, we discuss the challenges that building P2P extensions presents and outline our
proposed approach based on: i) a middleware that manages the resources offered by the
browser so multiple P2P extensions can coexist, without degrading the browser's
performance, ii) a framework for allowing developers experience in to create
collaborative extensions that do not require a client/server architecture.

In this paper we are particularly interested in demonstrating that our approach enables
developers without experience in P2P technologies to create P2P extensions with some
collaborative features.

The paper is structured as follows. In Section 2 we present the technical aspects of
our approach, including both the middleware and the framework. Sections 3 and 4
introduce two studies we have carried out to investigate if our framework is, in fact,
useful for inexperienced developers. Section 5 presents the related works, and finally
in Section 6 we give some conclusions and present future works.

2. The approach in a nutshell

To simplify development and to reduce development and execution errors, we separate
different concerns into two supporting artifacts. First, a middleware that manages all
P2P extensions installed in the browser, handling message exchange, and monitoring
workload. Second, a framework that abstracts the key domain objects (such as message
and peer), provides a clear interface to send messages and hides interaction with the
middleware. Following this approach, developers do not require any other technical
skill than those required to write any other web extension: JavaScript, HTML, and CSS;
and they follow the same kind of deployment process, i.e. simply install the extension
in a Web browser (no server deployment is required).

Figure 1 shows the overall approach. A web extension implements the P2P
middleware and exposes the P2P API to any other web extension installed on the same
browser. Other web extensions can directly execute functions in the middleware API
via the message passing mechanisms [2]. However, the recommended way to interact
with the middleware is via the P2P framework. Developers include the framework as a
dependency of their extensions (it is a JavaScript library). As it may be appreciated, all

Interaction Design and Architecture(s) Journal - IxD&A, N.49, 2021, pp. 97 - 110

98

the messages pass through the middleware and are later routed to the corresponding
web extension. For a concrete web extension, a message is a JSON object with the
features the developers desire. When the message passes through the middleware (using
the behavior provided by our framework), it is encapsulated with the information
required in the middleware layer (the type of message, timestamp, the extension’s
metadata among others) - see Figure 1, on the right. The P2P extension that delivers the
middleware comes with a minimalist user interface, which allows the user to have
control of the messages.

Fig. 1. The approach in a nutshell

Communication between peers is currently based on WebRTC. WebRTC brings real-
time video and audio communication to the browser and can be used to transport other
forms of content. It robustly solves the technical challenges in P2P communication. To
establish a direct connection between peers in WebRTC, a discovery and negotiation
method called signaling is used. It involves both parties connecting to a commonly
agreed upon service to decide the mechanisms they will use to connect (as they may be
located behind firewalls, in NAT’d networks, etc.). The signaling process can be
implemented with any technology compatible with WebSocket/XHR. WebRTC
depends on a commonly known signaling server that introduces a unique point of
failure and turns the architecture into a hybrid P2P. However, it must be noted that our
approach still removes the need for writing and deploying a specific server for each
web extension. We consider this to be a good trade-off while we explore other
alternatives.

2.1 Framework

The framework is packaged as a JavaScript library. It can be included in web extension
projects that may be executed in desktop and mobile Web browsers. Once included in
the web extension project, the user must create a class that represents the application
(for instance, P2PNewsVisualization), and make this class inherit from the extension
point offered by the Framework, which is called AbstractP2PExtension. This extension

Interaction Design and Architecture(s) Journal - IxD&A, N.49, 2021, pp. 97 - 110

99

point lets developers specify the behavior of their web extensions considering two
communication modes: (a) to send a message to another peer without expecting a
response, (b) to send a request message for which a response is expected and must be
managed by the peer that made the request when it arrives. The following list presents
the main aspects to be considered for using the AbstractP2PExtension extension point.
The developer must instantiate the concrete class and send to the new instance the
connect() message which it inherits from the extension point. What connect() message
does is:

● to send the initialize() message to the new instance. This is a method that
developers must implement to set instance variables related to the extension’s
metadata (name and id) to uniquely identify the extension.

● to initialize the P2P communication mechanism for the web extension.
● to register the extension in the middleware.

Developers may use other inherited behaviors to look for peers, and to send
messages/requests to other peers:

● getPeers(callback): obtains the peers currently connected. Since this method
is asynchronous, a callback function must be passed as a parameter.

● sendMessage(msg, peer): sends a message (first parameter) to a specific peer
(second parameter).

● broadcast(msg): send a message to all the peers available.
● sendRequest(msg, peer): send a request message (first parameter) to a specific

peer (second parameter). It is expected to receive a response.
● sendResponse(msg, peer): send a response using a message (first parameter),

and to a specific peer (third parameter). In this case, the msg (a JSON object)
should be populated with further information about the original request.

To handle messages and requests according to its needs, the extension must
implement some of the following methods (or all of them):

● receiveMessage(msg, peer): this method will be executed when a new
message is sent to the extension. It is not expected to deliver a response. It
receives the message as the first parameter and the peer who sent it as the
second parameter.

● processRequest(msg, peer): this method will be executed when the extension
receives a request. It is not expected to create and deliver a response during
the method execution. This method is suitable for human (interactive)
collaboration. Its response depends on the user’s interaction which occurs
asynchronously.

● automaticProcessing(msg, peer): this method will be executed when the
extension receives a request and this request was marked as automatic (it is
just a flag in the message). This method must return a JSON object intended
to be used as a response, and the framework automatically delivers it when the
method finishes. This method is specially designed for computing
collaboration, that can be automated, i.e. without depending on user
intervention.

● If the extension sends requests, it must implement the processResponse(msg,
peer) method to manage the responses to the requests previously done.

Interaction Design and Architecture(s) Journal - IxD&A, N.49, 2021, pp. 97 - 110

100

Fig 2. The framework and its extension point, the class AbstractP2PExtension

Figure 2 shows a simplified version of our framework plus another class showing
how to inherit from the extension point, named AbstractP2PExtension. The
P2PConnector class is the one that uses the middleware API. Two other classes provide
simple abstractions for the peer and the message. The Message class is managed by the
AbstractP2PExtension and the P2PConnector objects, meanwhile, the concrete class
representing the web extension (P2PNewsVisualization) always works with the JSON
Object defined by the developer.

3. Case studies

Two case studies were conducted to demonstrate the potential of P2P web extensions,
to assess to what extent the proposed middleware and framework succeed in abstracting
the complexity of P2P communication, and to identify strengths and weaknesses of the
approach and its current implementation. The first case study focuses on building P2P

Interaction Design and Architecture(s) Journal - IxD&A, N.49, 2021, pp. 97 - 110

101

extensions from scratch using our approach. It does so by asking several developers to
build the same P2P extension while keeping a diary of activities. The second case study
attempts to isolate the tasks that are directly related to the P2P networking functionality
of the web extension. It does so by asking one developer to transform an existing single
user web-extension (developed by himself) into a P2P web-extension. Following we
describe both case studies.

3.1. Case study 1: Collaborative information access

The first case study is focused on information retrieving, one of the most common tasks
carried out by users when navigating the web. In this case we circumscribe the problem
to web searching under the influence of the filter bubble [12]. Although the filter bubble
problem has been addressed mostly in the context of social media, for the sake of
simplicity, we will show a case study focused on main web search engines. However,
it could be generalized to specialized search engines offered by social networks, e-
commerce platforms, etc.

The main idea in this case study is to design a web extension that augments web
search result pages with the results given for the same search but for other users, in a
form of collaborative search. For instance, when a user searches something at Google,
the resulting page will be augmented with the results for the same search but retrieved
for all the users that have the same browser extension installed. In this way, the results
will not be constrained by the user’s profile information that the search engine
considered when executing the search, reducing the filter bubble effect.

In order to be able to identify if our P2P middleware is understandable from the point
of view of developers, we recruited several computer science students without
experience in the creation of web extensions. The design directrices we gave to them
were:

● To use our P2P middleware to provide an automatic collaboration. This
collaboration implied asking peers to perform the same search (same search
engine and same string search), extract the results, and send those results in
JSON format to the user that performed the search in the first place.

● To augment three web search pages (including Google, Bing and
DuckDuckGo), which includes:

● To augment each search result to show how many peers got that
result.

● To provide a results mash-up including the ten most frequent results
among all peers considering an average position, and thus to make
visible the weight a result has for other users.

As part of the task definition, we gave to participants mockups of the desired
augmenter behavior (mockups were similar to those shown in Figure 3 and 4). Each
search result must be augmented with an icon indicating the position of the result in the
other search engines. In Figure 3 (a search in DuckDuckGo for the term P2P) the first
result is not present in the results provided by Google or Bing, whereas the second result
is present in Google (in position 2), and not present in Bing. An additional widget
should indicate for each result, how many peers obtained it. In Figure 3, the first result

Interaction Design and Architecture(s) Journal - IxD&A, N.49, 2021, pp. 97 - 110

102

was obtained by 8 out of 9 connected peers. The web extension should also add a push
button to the search engine's toolbar. The button opens the "Results mashup" shown in
figure 4.

Fig 3. Augmentation mockup for DuckDuckGo search page

Fig 4. Results mashup

During the experience, participants completed an activity diary entry for each work

session, considering the time used for the session, the consulted resources, difficulties
and achievements. They could use any documentation available online to solve
technical difficulties about web extensions and JavaScript. Documentation about our
middleware and framework was also available as technical manuals. The activity diary
was materialized in a Google Form that participants have completed for each work
session.

Interaction Design and Architecture(s) Journal - IxD&A, N.49, 2021, pp. 97 - 110

103

Ten participants have been able to use our middleware and framework to create the
proposed P2P Web extension. They coudll use their preferred development
environment. According to the activity diaries, most of the developers consulted
StackOverflow for low level Javascript doubts and the Mozilla developer website for
those aspects related particularly with Web extensions. All participants were able to
read and understand our own documentation about the technologies presented in this
paper. The most commonly reported difficulties had to do with the availability of the
signaling service required by our P2P architecture, which was involuntary shut down
in several opportunities.

As a conclusion, developers without experience on the creation of web extensions
were able to create a collaborative one through the use of our approach.

3.2. Case study 2: Semantic extraction and information object retrieving

Data collection is an important part of learning, research, and decision making that
frequently takes place on the web. There are web extensions that simplify data
collection in the form of web-scraps, such as Evernote [13], or that help users to visually
create web scraping templates to obtain structured content from the web, such as
AnyPicker [14] and the WOA platform for data collection [15]. These tools normally
rely on the existence of a centralized server. This second case study aims to explore the
applicability of our P2P approach to build collaborative web extensions in the domain
of structured data collection. Moreover, the goal of this case study is also to assess the
difficulty of including P2P communication behaviour in a web extension using the
facilities offered by our approach.

To conduct this study we recruited one junior web developer with no previous
experience in building web-extensions or P2P applications. The study was organized in
two phases. In the first phase, the developer had to create a web-extension similar to
those offered by WOA and AnyPicker. Users of the extension can create extraction
templates (or recipes) that map elements in the DOM tree of a webpage to properties of
data items. Figure 5, shows the property definition dialog (on the right) where the user
is defining the price property, and a web-page on the left where the user clicks on the
DOM element that contains the price of the product. Templates, which are designed to
work on all web-pages matching a certain URL pattern, can later be used to extract
information items from those web-pages. Templates and extracted items are stored in
the browser's local storage. The extension provides functionality to inspect the list of
extracted items (i.e, the items repository). The items repository allows the user to filter
items only matching a given URL pattern, or matching a given type of item (e.g., a
phone, a car, a hotel, etc.). Items types and properties are expressed in terms of
Schema.org classes and properties.

Interaction Design and Architecture(s) Journal - IxD&A, N.49, 2021, pp. 97 - 110

104

Fig 5. Using the template editor to capture the price property of a product

In the second phase, the developer received basic training on the use of the

middleware and framework presented in sections 2. He was asked to use the
middleware and framework to modify the web-extension so it could work as a node in
a P2P network. He was free to decide how nodes in the network would interact with
each other. The developer's design decisions mainly impacted the way users extract
items and inspect the list of extracted items (the repository of items).

Whenever the user attempts to extract items from a web-page, the web extension
connects to all available peers and asks for matching templates (which could focus on
different parts of the DOM tree to extract items with varying properties). Templates are
presented to the user in a carousel, that indicates what items (with what properties) each
template would extract. The user can choose to extract several items that are saved in
the user's local storage. If the user extracts an item using a template obtained from a
peer, the template is saved locally so it remains available if the peer disconnects. The
repository of items was redesigned to include items available in the network. When the
user opens the repository, a request is made to all available pairs for items matching the
type and URL pattern filters. Moreover, an additional filter has been included to choose
whether items from peers should be retrieved or not.

Peers can join and leave the network at any time, which means that the available
templates and items vary in time. The absence of a central server results in a lower
maintenance cost for the network which, in the worst case scenario of only one user,
can work as a single-user web-extension. New peers can join the network to offer
functionality that is different from template definition and item extraction. A new type
of peer can, for example, offer functionality to compare items according to multiple
criteria, or to crawl the web automatically extracting items along the way. The current
design of the web-extension presents a serious limitation as all pairs in the network
(regardless of their location, affiliation or interests) share templates and items. This
design decision makes it unsuitable for realistic usage scenarios. However, the
underlying framework allows for web-extension developers to define richer peer
selection strategies.

After finishing the second phase, the developer was interviewed to learn about his
experience using the middleware and framework to transform the single-user web

Interaction Design and Architecture(s) Journal - IxD&A, N.49, 2021, pp. 97 - 110

105

extension into P2P. As positive points, the developers indicated that the framework
succeeds in abtracting the technicalities of P2P communication, and provides flexible
and comprehensive extension points. As the main criticisms, the developer reported
that it is difficult to verify (understand) connection status of peers which complicated
debugging applications as coding errors could not be told apart from connection errors.
Moreover, he reported that although documentation is precise and complete, more
varied examples are needed.

3.3 Discussion

The two case studies presented in this section demonstrate that our approach allows
developers without experience on P2P technologies to create collaborative web
extensions. In the first case study ten developers, i.e. the 100% of the participants, could
develop a web extension for collaborative search. In the second case study, more
qualitative data was acquired, which shows that migrating an existing web extension to
support P2P communication is also possible without important constraints. We are
aware that the kind of collaboration used in both experiences is simple, but
demonstrates that it is easy to use our framework and middleware.

In the context of this work we use the terms collaboration and collaboration support
to refer to a range of situations and supporting tools, following the early definitions
provided by Bair [16]. A web extension that offers information, coordination,
collaboration and/or cooperation support matches the software dimension in Lenz and
Lenz [17] definition of groupware (i.e. intentional group processes plus software to
support them). The case studies in this section cover only a small fraction of the
universe of collaboration supporting tools. However, they demonstrate the key features
of the proposed framework and middleware which are not limited to a particular form
of interaction among users, nor to a particular domain (e.g., learning, work, leisure,
etc.).

4. Related works

Although it is clear that underlying concepts about P2P are not new, since some years
ago there is a trend in their use in new domains. Probably, one of the most well-known
new applications of P2P is Blockchain, a technology that makes it possible to
decentralize information in a secure way. In this context, applications (these are called
Dapps, for Decentralized Applications) based on these blocks may be created, enabling
its use for smart contracts and reaching a broad range of domains such as IoT,
manufacturing systems, health systems, etc. [18]. There are mature technologies
behind Blockchain, such as Hyperledger and Ethereum. In the context of the Web,
Blockchain also may have an impact on its decentralization, giving more control to
users about their own information, an aspect that is also being tackled by other
approaches such as SOLID [19], as we explain below. However, none of these
technologies have an impact on the use of the Web in itself, i.e. in the way users interact
with contents and information.

Interaction Design and Architecture(s) Journal - IxD&A, N.49, 2021, pp. 97 - 110

106

In this paper we propose a novel use of P2P in the context of web navigation, creating
a new technological enabler for making web extensions collaborative without requiring
a centralized server. In this regard, and to the best of our knowledge, there are two well-
known applications of P2P in web browsers. First, there are approaches to support
collaborative computing. For instance, Pando [20] offers a platform in which a user
must install a server and run it in his own machine. Then, other users may access this
back-end application with their browsers to offer it for computing . On the other hand,
it has been proposed to use the browser as a distributed platform for content delivery
[21], [22]. In this line, Tindall [23] studies the use of a communication protocol that
improves how to program over WebRTC. Jannes et al. [24] propose a generic
distributed application server which is also currently supported by existing web
browsers such as Beaker Browser [25]. Other approaches use P2P communication for
specific aims, such as improving virtual environments [26]. Although these works show
that decentralizing the Web is a current topic, these are far to be applicable to web
extensions with the final goal of improving the overall user’s web experience.

Server-side support for web extensions was already studied and analyzed [27], in
which authors propose a Model-Driven Web Augmentation approach to model back-
end requirements. Although the complexity for developing, deploying and maintaining
the back-end component is clearly better than using an ad-hoc approach. We believe
that a P2P approach based exactly on the same technology required for programming
web extensions is a more suitable and convenient way, at the same time that it removes
any need of a centralized server application.

Decentralizing the web is the main goal of the SOLID project [19], led by Tim
Berners-Lee. With SOLID, application data is stored using RDF and Semantic Web
technologies in personal online datastores (PODs) that are controlled by the user. PODs
are web accessible data stores that the user can deploy on personal servers, or can obtain
as a service from a company. The user can control, with various levels of granularity,
which applications have access to which parts of the PODs. SOLID puts the user back
in control of application data. The work presented in this paper shares the motivations
of SOLID, and even borrows the idea of using Semantic Web vocabularies to model
data (as in case study 2). However, the main difference with the SOLID approach is
that our framework and middleware use the browser's local storage to store data.
Moreover, each web extension developer is still responsible for the data that the
extension generates, stores and shares. In a way, our approach is still not able to
completely break the data silos created by the co-dependency of applications and the
data they use.

5. Conclusions and Future works

External Web structures (i.e. "defining hypermedia structures externally of the involved
documents" [28]) are software artifacts that improve the overall Web experience. Web
extensions are the most common and convenient way to develop and deploy this kind
of software. Without an intermediate server, a web extension cannot communicate to
the same web extension installed in another user’s browser. Even more, when some
communication between different web browsers is required, new technical barriers

Interaction Design and Architecture(s) Journal - IxD&A, N.49, 2021, pp. 97 - 110

107

appear (for instance, dealing with back-end technologies beyond HTML, CSS, and
JavaScript). Server-side support has been very important for different reasons [27].

This paper presented an approach to build P2P web extensions, which aims to
eliminate the need for a centralized server to communicate web browsers and users. A
signaling back-end service has been designed and implemented. It may connect peers
for any web extension or for a specific one without requiring changes on it, neither on
the P2P web extensions source code because it was conceived as a generic single-
purpose (to connect peers) platform.

In this paper we focused on the experience of developers while using the middleware
and framework. The main idea was to study if developers without experience on P2P
and on web extensions were able to create a collaborative extension without involving
themselves in low level aspects of peer communication. In this regard we can say that
inexperienced developers could achieve the proposed development task just by
consulting available documentation of web extension development and of our
approach.

Although we believe that our approach improves the potential of web extensions
without requiring a centralized application, we still need to create and evaluate more
scenarios. For instance, pervasive and distributed storage should be supported by the
framework. However, we already could apply our approach in several scenarios.
Besides future evaluations and experiments in this regard, it is also mandatory to study
the power of a P2P web browser, as well as how to continuously measure and limit this
kind of collaboration in order to not degrade the overall Web experience.

References

1. P. Mehta, Creating Google Chrome Extensions, 1st ed. edition. Place of publication not
identified: Apress, 2016.

2. ‘Browser Extensions. Draft Community Group Report 28 January 2020’, Jan. 2020.
Accessed: Mar. 17, 2021. [Online]. Available: https://browserext.github.io/browserext/

3. F. Daniel and M. Matera, Mashups: Concepts, Models and Architectures, 2014th edition.
New York: Springer, 2014.

4. J. Wong and J. I. Hong, ‘Making mashups with marmite: towards end-user programming for
the web’, in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, New York, NY, USA, Apr. 2007, pp. 1435–1444. doi: 10.1145/1240624.1240842.

5. O. Díaz and C. Arellano, ‘The Augmented Web: Rationales, Opportunities, and Challenges
on Browser-Side Transcoding’, ACM Trans. Web, vol. 9, no. 2, p. 8:1-8:30, May 2015, doi:
10.1145/2735633.

6. O. Díaz and C. Arellano, ‘Sticklet: An End-User Client-Side Augmentation-Based Mashup
Tool’, in Web Engineering, Berlin, Heidelberg, 2012, pp. 465–468. doi: 10.1007/978-3-642-
31753-8_45.

7. O. Díaz, J. De Sosa, and S. Trujillo, ‘Activity fragmentation in the web: empowering users
to support their own webflows’, in Proceedings of the 24th ACM Conference on Hypertext
and Social Media, New York, NY, USA, May 2013, pp. 69–78. doi:
10.1145/2481492.2481500.

8. S. Firmenich, G. Rossi, M. Winckler, and P. Palanque, ‘An approach for supporting
distributed user interface orchestration over the Web’, International Journal of Human-
Computer Studies, vol. 72, no. 1, pp. 53–76, Jan. 2014, doi: 10.1016/j.ijhcs.2013.08.014.

9. J. P. Bigham and R. E. Ladner, ‘Accessmonkey: a collaborative scripting framework for web

Interaction Design and Architecture(s) Journal - IxD&A, N.49, 2021, pp. 97 - 110

108

users and developers’, in Proceedings of the 2007 international cross-disciplinary
conference on Web accessibility (W4A), New York, NY, USA, May 2007, pp. 25–34. doi:
10.1145/1243441.1243452.

10. C. González-Mora, I. Garrigós, S. Casteleyn, and S. Firmenich, ‘A Web Augmentation
Framework for Accessibility Based on Voice Interaction’, in Web Engineering, Cham, 2020,
pp. 547–550. doi: 10.1007/978-3-030-50578-3_42.

11. M. Wischenbart, S. Firmenich, G. Rossi, G. Bosetti, and E. Kapsammer, ‘Engaging end-user
driven recommender systems: personalization through web augmentation’, Multimed Tools
Appl, vol. 80, no. 5, pp. 6785–6809, Feb. 2021, doi: 10.1007/s11042-020-09803-8.

12. E. Pariser, The Filter Bubble: How the New Personalized Web Is Changing What We Read
and How We Think, Reprint edition. Penguin Books, 2012.

13. Evernote. Accessed: Mar. 22, 2021. [Online]. Available: https://evernote.com/
14. AnyPicker. Accessed: Mar. 22, 2021. [Online]. Available: https://anypicker.ryang-

studio.com/
15. G. Bosetti, S. Firmenich, G. Rossi, M. Winckler, and T. Barbieri, ‘Web Objects Ambient:

An Integrated Platform Supporting New Kinds of Personal Web Experiences’, in Web
Engineering, vol. 9671, A. Bozzon, P. Cudre-Maroux, and C. Pautasso, Eds. Cham: Springer
International Publishing, 2016, pp. 563–566. doi: 10.1007/978-3-319-38791-8_49.

16. J. H. Bair, ‘Supporting cooperative work with computers: addressing meeting mania’, in
Digest of Papers. COMPCON Spring 89. Thirty-Fourth IEEE Computer Society
International Conference: Intellectual Leverage, Feb. 1989, pp. 208–217. doi:
10.1109/CMPCON.1989.301929.

17. Peter Johnson-Lenz and Trudy Johnson-Lenz, ‘Post-Mechanistic Groupware Primitives:
Rhythms, Boundaries, and Containers’, The International Journal of Man Machine Studies,
vol. 34, pp. 395–417, 1991.

18. A. Bahga and V. Madisetti, Blockchain Applications: A Hands-On Approach, 1st edition.
VPT, 2017.

19. E. Mansour et al., ‘A Demonstration of the Solid Platform for Social Web Applications’, in
Proceedings of the 25th International Conference Companion on World Wide Web - WWW
’16 Companion, Montréal, Québec, Canada, 2016, pp. 223–226. doi:
10.1145/2872518.2890529.

20. E. Lavoie, L. Hendren, F. Desprez, and M. Correia, ‘Pando: Personal Volunteer Computing
in Browsers’, in Proceedings of the 20th International Middleware Conference, New York,
NY, USA, Dec. 2019, pp. 96–109. doi: 10.1145/3361525.3361539.

21. A. Kobusinska, A. Wolski, J. Brzezinski, and M. Ge, ‘P2P Web Browser Middleware to
Enhance Service Oriented Computing — Analysis and Evaluation’, in 2017 IEEE 10th
Conference on Service-Oriented Computing and Applications (SOCA), Kanazawa, Nov.
2017, pp. 58–65. doi: 10.1109/SOCA.2017.16.

22. C. Vogt, M. J. Werner, and T. C. Schmidt, ‘Leveraging WebRTC for P2P content distribution
in web browsers’, in 2013 21st IEEE International Conference on Network Protocols
(ICNP), Oct. 2013, pp. 1–2. doi: 10.1109/ICNP.2013.6733637.

23. N. Tindall and A. Harwood, ‘Peer-to-peer between browsers: cyclon protocol over
WebRTC’, in 2015 IEEE International Conference on Peer-to-Peer Computing (P2P), Sep.
2015, pp. 1–5. doi: 10.1109/P2P.2015.7328517.

24. K. Jannes, B. Lagaisse, and W. Joosen, ‘The Web Browser as Distributed Application Server:
Towards Decentralized Web Applications in the Edge’, in Proceedings of the 2nd
International Workshop on Edge Systems, Analytics and Networking - EdgeSys ’19, Dresden,
Germany, 2019, pp. 7–11. doi: 10.1145/3301418.3313938.

25. Baker Browser. Accessed: Mar. 22, 2021. [Online]. Available: https://beakerbrowser.com/
26. T. Koskela, J. Vatjus-Anttila, and T. Dahl, ‘Communication Architecture for a P2P-Enhanced

Virtual Environment Client in a Web Browser’, in 2014 6th International Conference on New
Technologies, Mobility and Security (NTMS), Mar. 2014, pp. 1–5. doi:

Interaction Design and Architecture(s) Journal - IxD&A, N.49, 2021, pp. 97 - 110

109

10.1109/NTMS.2014.6814011.
27. M. Urbieta, S. Firmenich, G. Bosetti, P. Maglione, G. Rossi, and M. A. Olivero, ‘MDWA: a

model-driven Web augmentation approach—coping with client- and server-side support’,
Softw Syst Model, vol. 19, no. 6, pp. 1541–1566, Nov. 2020, doi: 10.1007/s10270-020-
00779-5.

28. N. O. Bouvin, ‘From NoteCards to Notebooks: There and Back Again’, in Proceedings of
the 30th ACM Conference on Hypertext and Social Media, New York, NY, USA, Sep. 2019,
pp. 19–28. doi: 10.1145/3342220.3343666.

Interaction Design and Architecture(s) Journal - IxD&A, N.49, 2021, pp. 97 - 110

110

