
Model of Personal Discount Sensitivity in 
Recommender Systems 

Masahiro Sato, Hidetaka Izumo, Takashi Sonoda  

 
Fuji Xerox Co., Ltd.  

6-1 Minatomirai, Nishi-ku, Yokohama, Kanagawa, Japan  
{sato.masahiro, izumo.hidetaka, takashi.sonoda}@fujixerox.co.jp 

Abstract. Recommender systems help users to encounter information or items 
that are of interest to them. Prior work on recommender systems has focused on 
eliciting preferences for items and neglected the personal traits in discount 
sensitivity. In this paper, we propose a recommender system that incorporates 
the influence of discounts. The effectiveness of the model is verified using a 
public retail dataset. The discount-sensitive model increased recommendation 
accuracy and modeling personal differences in this sensitivity further improved 
it. In order to specify the characteristics of discount sensitivity, the correlations 
between discount sensitivity and other traits of users and items are also 
investigated. The results show that discount sensitivity is positively correlated 
with item popularity and negatively correlated with persistence in purchase 
behaviors. 
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1   Introduction 

Recommender systems help people find interesting information in the age of 
“information overload”. These systems learn the preference of each user from their 
past interactions with items and then predict which items will be attractive to them. 
Vast number of research studies have been dedicated to the advancement of 
recommendation algorithms and the exploration of their application fields [1, 2]. 

Recommender systems are beneficial not only for end-users but also for business 
operators. Ecommerce businesses increase their sales by recommending commercial 
goods [3]. Currently, the use of recommendation engines is prevalent in online shops.  

While research on recommendations has mainly focused on the prediction of item 
preferences, users’ choices are not always determined by item preferences alone. In 
retail business, shop owners often offer bargains to attract customers. Consumers are 
sensitive to this price variation, when they make purchasing decisions. 

Recently, recommender systems have started to incorporate various psychological 
aspects of users to fulfill users’ needs in more depth [4]. The discount sensitivity of 
each user is one of these aspects that differs among users. 
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In this work, we propose a recommendation model with personalized discount 
sensitivity, extending the state-of-the-art recommender algorithm. We also analyzed 
the correlations between discount sensitivity and other personal attributes. This paper 
is an extended version of the work presented at the Third Workshop on Emotions and 
Personality in Personalized Systems [5]. 

In the next section, we review prior work related to this study. In Section 3, we 
explain the proposed model. Section 4 and 5 present the experimental procedures and 
results, respectively. Section 6 describes the correlation of discount sensitivity to 
other features. Finally, we summarize and conclude this research in Section 7. 

2   Related Work 

The effect of price promotion has been explored extensively in the field of marketing 
science [6, 7], and recently, some recommendation studies [8, 9, 10, 11, 12] have 
taken into account the influence of price. For instance, a hybrid recommender system 
for supermarkets including discount information was proposed in [8]. Price has also 
been personalized using a multi-armed Bandit in [9], depending on three classes of 
consumers; those who buy an item regardless of promotions, those who buy an item if 
it is discounted, and those who do not buy the item even if it is discounted. The price 
range of each item has been incorporated into topic models to learn intrinsic user 
characteristics concerning prices [10] and the item choice within a category has also 
been predicted, given the effect of price cuts [11]. Further, the consumer responses to 
bundled discounts have been modeled, accounting for the correlation of item 
preferences [12]. Our work is different from these studies in that it combines user 
preference and discount sensitivity in a unified model that learns them simultaneously.  

The relationship between personality and recommendation has also attracted 
interest. Personality can be predicted implicitly [13] and acquired personality can be 
used to guess item preferences [14, 15]. It has been found that like-logs in social 
networking services are correlated with personality [13]. Personality similarity has 
been used for tackling the difficulty in estimating the preference of new users [14]. 
Behaviors in micro blog services are indicators of personality and useful for brand 
preference elicitation [15]. Active learning for preference elicitation can leverage 
personality to acquire ratings efficiently [16]. Personality has been found to be 
correlated not only to item preference, but also to diversity preference [17, 18]. For 
instance, diversity in movie recommendation was adjusted by personality in [17], and 
how personality influences the preference of diversity types was investigated in [18]. 
We regard discount sensitivity as an aspect of personality and investigate its 
relationship with diversity preference. 

Recommendation model with discount sensitivity can be seen as an instance of 
multi-criteria recommender systems [19], composed of two criteria, item preference 
and discount preference. In addition, discount can be regarded as one of the contexts 
and our model can be contextualized also in context-aware recommender systems [20]. 
Relevant contexts depend on domains; in tourism, for example, distance, time 
available, crowdedness, and knowledge of the surroundings are effective contexts 
[21]. 
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3   Discount-Sensitive Model 

We extended the Bayesian personalized ranking (BPR) model [22] with matrix 
factorization (MF) [23] to incorporate personalized discount effects. In Subsection 3.1, 
we present a preliminary analysis of personal difference in discount sensitivity, which 
motivated us to develop a recommendation algorithm that includes it. Subsection 3.2 
introduces the MF of item preferences in BPR, and Subsection 3.3 presents our 
extensions. 

3.1   Individual Difference of Discount Sensitivity  

The effects of price promotions can be different among users and items. Our 
preliminary analysis of a public retail dataset (described in Section 4.1) is in 
accordance with this hypothesis. 

We compared the purchase behaviors of two users under various price promotion 
conditions in Fig. 1, which shows the distributions of purchase counts for various 
discount rates. The user in the left panel tends to buy at regular prices, and probably 
has low discount sensitivity. The user in the right panel appears to search for 
discounted items, and thus should have high discount sensitivity. 

We also investigated the difference of the discount effect on items. Fig. 2 shows 
the purchase rates of two items at different discount rates. We define purchase rate as 
the number of purchases divided by the number of visiting users on each day. The left 
and the right panels show the characteristics for different items in different categories 
and the blue lines show linear regressions. Discounts increase sales for both items, but 
they increase them more for the right item, that is, the discount sensitivity of the right 
item is much higher than that of the left item.  

 

Fig. 1. Discount rate distributions of purchased items.  
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Fig. 2. Discount rate dependence of purchase rates.  

3.2   MF of Item Preference 

Collaborative filtering is a recommendation technique that predicts item preference of 
a user from the preferences of similar items and similar users [24]. To overcome the 
sparsity of feedback data of users for items, MF is commonly used in collaborative 
filtering [23]. 

MF decomposes preference into the latent factors of users and items. Adding 
biases for item preference, the valuation of user u to item i can be expressed as [23]:  

 vui = µ + bi + bu + qi
T pu ,     (1) 

where µ  is a bias common to all items and users, bi  is an item-specific bias, and 
bu  is a user-specific bias. Futher, qi  is the latent factor of item i  and pu  is the 
latent factor of user u . 

Bayesian personalized ranking (BPR) is a pairwise learning framework [22], that 
can be adopted for various recommendation tasks [25, 26]. In BPR, probability that 
user u  buys item i  and does not buy item j  is expressed as a sigmoid function 
of rating difference between i  and j : 

 
p(i ∈Iu

+ ^ j ∈I \ Iu
+ ) = 1

(1+ exp(−xuij ))
.   (2) 

 
xuij = vui − vuj

= bi − bj + (qi − qj )
T pu .

     (3) 

Here, Iu
+  are items for which a user gives positive feedback (e.g., purchase), and 

I \ Iu
+  are items for which the user gives no feedback. Note that µ  and bu  are 

irrelevant in the BPR setting, and hence the scope of the parameters is as follows. 
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 Θ = {bi , qi , pu | i ∈I , u ∈U}.     (4) 

Training data for BPR is composed of user-item triplets: 
 

 DS ≡ {(u, i, j) | i ∈Iu
+ ^ j ∈I \ Iu

+}.     (5) 

Each triple corresponds to the observation that a user prefers item i  over item 
j . The log-likelihood of this observation is calculated as: 

 
L ≡ ln p(Θ |DS )
= ln p(DS |Θ)p(Θ)− ln p(DS )

    (6) 

BPR optimizes model parameter Θ  by maximizing log likelihood L under training 
data DS . Assuming a normal distribution with zero mean and diagonal covariance  
for priors p(Θ) , the gradient of the log likelihood becomes the following. 

 
 

∂L
∂Θ

=
exp(−xuij )
1+ exp(−xuij )(u, i, j )∈DS

∑ i
∂
∂Θ

xuij − λΘΘ.     (7) 

In this study, stochastic gradient descent was used, as in the original paper [22], 
and the update rule is: 

 
 
Θ←Θ +α

exp(−xuij )
1+ exp(−xuij )

i
∂
∂Θ

xuij − λΘΘ
⎛

⎝⎜
⎞

⎠⎟
.     (8) 

3.3   Discount Sensitive Extensions 

We assumed that item valuation comes from the preference for the item itself and the 
preference for discount. The preference for discount can be formalized as the product 
of the discount rate and discount sensitivity. In order to personalize discount 
sensitivity, we introduced an item-specific bias and a user-specific bias. Considering 
the possibility that the combination of a user and an item influences discount 
sensitivity, we also added latent factors for the user and item. Equation (1) is therefore 
extended to:  

 
vui = µ + bi + bu + qi

T pu
+di (µ

d + bi
d + bu

d + (qi
d )T pu

d ),
    (9) 

where id  denotes the discount rate of an item i . Terms µd , bi
d , bu

d , qi
d , pu

d  are 
discount sensitivity terms, which are proportionality coefficients that drive up the 
valuation in response to the discount. Specifically, 

dµ  is a bias common to all items 
and users, which shows the general effect of discounts, bi

d  and bu
d  represent 

discount sensitivity biases for item i  and user u , respectively, and 
d
up  and d

iq  
respectively correspond to the latent factors of user u  and item i .  
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Including these terms, the rating difference in Equation (3) becomes: 

 

xuij = bi − bj + (qi − qj )
T pu

+di (µ
d + bi

d + bu
d )− dj (µ

d + bj
d + bu

d )

+(diqi
d − djqj

d )T pu
d .

    (10) 

As a result, the optimized parameter Θ  changes, as follows: 

 Θ = {bi , qi , pu , µ
d , bi

d , bu
d , qi

d ,  pu
d | i ∈I , u ∈U}.     (11) 

Training data then include the discount rate of each item on the day of shopping S .  

 DS ≡ {(u, i, j, di,  s , dj ,  s ) | i ∈Iu
+ ^ j ∈I \ Iu

+ ^ s ∈S}.     (12) 

These training data justify the change of item selection depending on price. For 
example, user u  could have bought item i  instead of j  when discount 

, ,i s j sd d>  and on another day, user u  could have bought item j  instead of i  
when discount , ,j s i sd d> . 

We also modified the sampling scheme of the training data. First, we chose a user   
randomly and selected a shopping day on which the user visited the shop. Next, we 
selected item i  from the items purchased by the user on that day, and item j  from 
the items not purchased by the user. As we explain later in Subsection 4.2, items on 
the shelf might vary each day. As a result, the sampling of j  should be confined to 
items existing on the day. 

4   Experimental Conditions 

In this section, we explain experimental conditions. First, we describe the dataset used 
in this study. We next detail the specifics of training and evaluation. In Subsection 4.3, 
the tested models and accuracy metrics are specified.  

4.1   Dataset   

We used the Ta-Feng dataset [27], which contains the transaction logs of a retail shop. 
This shop sells a wide range of merchandise, from food and grocery items to office 
supplies and furniture [27]. The transaction logs include user IDs, item IDs, dates, and 
prices. The records cover a period of four months. The name of the items and 
subclasses are not published; however, items are categorized into subclasses, and a 
subclass ID is assigned to each item ID. 

We extracted the unit prices of items on each day. The item price was the same on 
the same day, in most cases. When multiple prices existed on one day, we picked the 
median price as the day price. The discount rates of each item on each day were 
calculated as:  
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 1− the day  price
max(prices of the item)

.     (13) 

We used a dense subset of the Ta-Feng data, extracting the data of users that 
visited the shop 10 times or more and items that sold 100 times or more. This subset 
comprises 7.4% of the users and 7.6% of the items, and includes 16.2% of the records. 
The basic statistics of the original Ta-Feng data and extracted data are summarized in 
Table 1.  

Table 1. Statistics of the Ta-Feng dataset and extracted dataset.   

Data #records #users #items #subclasses 
Original 817741 32266 23812 2012 

Extracted 132168 2373 1802 373 
 

4.2   Training and Evaluations  

Of the 120 days coverd by the dataset, we used the last 10 days for evaluation and the 
other 110 days for training, considering that learning precedes prediction in real 
scenarios. There was at least one purchase log for all the extracted users in the 
training subset. In contrast, only 1,850 users had purchase histories in the test subset. 
Evaluations were conducted on these partial users, although the parameters of all the 
extracted users were learned in the training phase.  

The items on the shelf changed every day. We assumed that items with at least one 
purchase record on a certain day were on the shelf on that day. Of the 1,802 selected 
items, 1,087 items on average were sold each day. At the evaluation stage, we 
selected the recommended items of each day from the items on the shelf on that day. 
We did not exclude items purchased during training periods from the recommended 
items. In contrast to movie or book consumption, repeat purchase is common in 
grocery shopping and increasing repeat purchases by recommendations is also 
beneficial for retailers. Furthermore, predicting repeat purchase is a non-trivial task, 
as item choice is affected by the price discounts and the availability of items on each 
day.  

4.3   Accuracy Comparison 

We compared the conventional MF model with several types of discount sensitive 
models: MF with non-personalized discount sensitivity (MF-DS(NP)), MF with 
personalized discount sensitivity (MF-DS(P)), and MF with personalized and user-
item-interactional discount sensitivity (MF-DS(PI)). 

We used the area under the curve (AUC), precision and recall as evaluation metrics. 
We initially calculated the metrics for each user on each day. We next calculated the 
per-user average over the testing period. The statistical significance of the difference 
in accuracy among different models was verified for user-by-user pairs of metrics 
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using the Wilcoxon signed rank test. As a representative value, we further took the 
average of all users for each model. 

5   Evaluation Results 

We evaluated our models for various matrix dimensions (Subsection 5.1). Detailed 
comparisons of each model and the results of the significance tests are shown in 
Subsection 5.2. We adjust the data density to verify the effectiveness of our models 
under different densities in Subsection 5.3. 

5.1   Comparison for Various Matrix Dimensions 

We evaluated the AUC of MF and MF-DS(PI) at matrix dimensions ranging from 3 to 
300. Fig. 3 shows results. The discount sensitive models improved the AUC at all 
dimensions.  

 

Fig. 3. AUCs of MF and MF-DS(PI) at different matrix dimensions.  

5.2   Detailed Comparison of Models 

We next conducted a detailed comparison of conventional MF, MF-DS(NP), MF-
DS(P), and MF-DS(PI). We calculated precision (P) and recall (R) when the number 
of items recommended by the system is 1, 10, and 100. In most conditions, MF-
DS(NP) outperformed MF and MF-DS(P) achieved further improvement. MF-DS(PI) 
tends to increase accuracy, though not always significantly. 
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Table 2. Accuracy comparison of algorithms at 30 matrix dimensions. Marks * and ** indicate 
statistically significant differences on the Wilcoxon signed rank test with p < 0.1 and p < 0.01, 
respectively. MF-DS(NP) was compared with MF, MF-DS(P) was compared with MF-DS(NP), 
and MF-DS(PI) was compared with MF-DS(P). 

Dimension 
30 AUC P/R 

(1 item) 
P/R 

(10 items) 
P/R 

(100 items) 

MF 0.7571 0.1467/ 
0.0586 

0.0624/ 
0.2323 

0.0152/ 
0.4726 

MF-DS(NP) 0.8012** 0.1666*/ 
0.0661* 

0.0570/ 
0.2171 

0.0165**/ 
0.5247** 

MF-DS(P) 0.8030** 0.2210**/ 
0.0878** 

0.0638**/ 
0.2425** 

0.0170**/ 
0.5341** 

MF-DS(PI)	  0.8038 0.2226/ 
0.0923* 

0.0649*/ 
0.2450* 

0.0170/ 
0.5387 

 
Table 3. Accuracy comparison of algorithms at 100 matrix dimensions. Marks * and ** indicate 
statistically significant differences on the Wilcoxon signed rank test with p < 0.1 and p < 0.01, 
respectively. MF-DS(NP) was compared with MF, MF-DS(P) was compared with MF-DS(NP), 
and MF-DS(PI) was compared with MF-DS(P). 

Dimension 
100 AUC P/R 

(1 item) 
P/R 

(10 items) 
P/R 

(100 items) 

MF 0.7758 0.1993/ 
0.0812 

0.0792/ 
0.2805 

0.0172/ 
0.5191 

MF-DS(NP) 0.8198** 0.1984/ 
0.0812 

0.0646/ 
0.2411 

0.0184**/ 
0.5705** 

MF-DS(P) 0.8242** 0.2337**/ 
0.0959** 

0.0737**/ 
0.2698** 

0.0188**/ 
0.5836** 

MF-DS(PI)	  0.8259* 0.2463**/ 
0.1000* 

0.0721/ 
0.2639 

0.0191**/ 
0.5875* 

5.3   Comparison at Various Data Densities 

In order to confirm the universality of the discount sensitive effect, we adjusted the 
data density. Density is defined by the ratio of purchased item-user pairs to all item-
user pairs. Note that the data density of the extracted data in Table 1 is 0.024 and 
experiments in Subsection 5.1 and 5.2 were conducted at this density. Fig. 4 shows 
the AUCs of MF and MF-DS(PI) at different densities. MF-DS(PI) improved the 
AUC for all densities and tends to be more effective on denser datasets. 
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Fig. 4. AUC of MF and MF-DS(PI) at different data densities.  

6   Analysis of Discount Sensitivity 

In this section, we investigate the discount sensitivity bias of users and items in MF-
DS(P).   

6.1   User Profile and Discount Sensitivity 

The Ta-Feng dataset includes customer residence areas and ages. We analyzed the 
influence of these factors on discount sensitivity. 

The left panel of Fig. 5 portrays the distribution of the discount sensitivity biases of 
users for respective residence areas. Areas are sorted in order of distance to the shop. 
The width of the shape expresses the density of the distribution at each vertical value 
of the discount sensitivity bias. The correlation coefficient r  is 0.098 and the 
statistical significance level p  is 6.9 ×10−6. A weak but significant tendency was 
found in which users from distant areas responded to discounts more strongly. Distant 
users might be prone to compensate for their transportation costs with good deals on 
purchases. We also investigated age-dependence, but no effect was observed. 

We hypothesized that users with a strong tendency to buy particular items (item 
persistence) might react to discounts differently. We believe that persistence is closely 
related to personality. For instance, persistence is most likely correlated positively 
with neuroticism and negatively with openness and agreeableness. Personal item 
persistence was extracted from repeat purchases of users within the same category. In 
[28], the propensity for diversity, which is the inverse of item persistence, was 

Interaction Design and Architecture(s) Journal - IxD&A, N.28, 2016, pp. 110-123



measured using entropy. We used entropy as an indicator of the weakness of a user’s 
item persistence.  

We first calculated the per-user subclass-level entropy and took the average for 
each user as:  

 H (u) = − 1
C

ri, u log
i∈Ic
∑

c∈C
∑ ri, u ,     (14) 

where cI denotes the item set in a specific item subclass category, and ir  
represents repeat purchase density, defined as the number of purchases for item i  
divided by the total purchases of the subclass category. A subclass purchased less 
than four times was omitted from the summation. Low entropy in a subclass means 
that a user has strong persistence in that subclass and tends to buy specific items. 
High entropy in a subclass means that a user does not care about differences among 
items in the subclass and tends to buy various items.  The average entropy over 
categories, defined as Equation (14), represents whether the user is generally picky or 
not. 

The right panel of Fig. 5 presents the relation of entropy and discount sensitivity 
bias of users. Discount sensitivity increases as entropy increases. The correlation 
coefficient r  was 0.12 and the statistical significance level p  was 3.2 ×10−7. The 
result indicates that users without persistence tend to select discounted items, which is 
reasonable considering that picky users do not like another item regardless of the 
price offered.  

We constructed a linear regression model for the discount sensitivity bias of users 
from the residence area and the entropy. Estimated coefficients are positive (0.024 for 
residence area and 0.044 for entropy) and significant (the p-values are 4.5 ×10−5 for 
residence area and 3.9 ×10−5 for entropy). The root mean square error (RMSE) of the 
prediction is 0.2462 for 10-fold cross validation, an improvement of the value of 
0.2482, acquired from the mean estimate.  

 

Fig. 5. Correlations of user discount sensitivity biase with user attributes. The residence area in 
the left plot are ordered according to distance from the shop. 
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6.2   Item Profile and Discount Sensitivity  

We examined the correlation between the preference bias of items and discount 
sensitivity bias of items. The left panel of Fig. 6 shows that a positive correlation was 
found among the variables, where the correlation coefficient r  is 0.38. The 
preference bias of items is similar to item popularity. Therefore, this result suggests 
that the discounts of popular items are more appealing in general. 

It is well known in the field of marketing research that frequent and deep discounts 
will change consumers’ reference price and diminish discount sensitivity [6, 7]. We 
confirmed this effect by comparing the average discount rates of various items and 
their discount sensitivity biases. As shown in the right panel of Fig. 6, the correlation 
coefficient r is −0.17, and a negative correlation was found among the variables.  

We then created a linear regression model for item discount sensitivity bias from 
the popularity and the mean discount. Estimated coefficients are positive (0.186) for 
the popularity and negative (-0.436) for the mean discount. Both coefficients are 
significant (the p-values are 2 ×10−16 for the popularity and 1.4 ×10−9 for the mean 
discount). The RMSE of the prediction is 0.204 for 10-fold cross validation, an 
improvement on the value of 0.222, acquired from the mean estimate.   

 

Fig. 6. Correlations of discount sensitivity biase of items with item attributes.  

7   Conclusion 

In this paper, we proposed a recommendation model that incorporates the price 
discount effect. Personalized discount sensitivity was introduced into the conventional 
MF. The proposed model enhances the AUC, precision and recall in a retail shopping 
dataset. The results demonstrate that personalized discount sensitivity is a crucially 
important component in recommender systems in the retail domain. 

We analyzed the personal difference of discount sensitivity in relation to user and 
item attributes. Item discount sensitivities are correlated with item popularity and 
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mean discount rate, and user discount sensitivities are correlated with the distance to 
the shop and users’ item persistence. We believe that persistence is closely related to 
personality and these findings contribute to the understanding of personality. 

In future work, we plan to extend our model with personality. Combining purchase 
records and personality information, discount sensitivity can be estimated from 
personality. Cross-item effects (e.g., how the purchase of a discounted item affects the 
purchase of another item) have been investigated in marketing science [6, 7]. The 
fusion of other consumer psychologies and recommendation algorithms is another 
potential direction for future research. 
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